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millions of guesses are adequate

with a colliding attack;” etc.

2. Allocate most UDP ports

to other tasks, non-reusably.



Bad news: Ignorant developers

often whip up breakable ciphers.

See, e.g., Klein’s analysis

leading to 2007.07.24

“emergency” BIND 9 upgrade:

In essence, this is a weak version
(since the output is 16 bits, as
opposed to the traditional 1 bit)
of the well studied cryptosystem
known by many names: “bilateral
stop/go (LFSR) generator”,
“mutually clock controlled (LFSR)
generator” and “mutual (or
bilateral) step-1/step-2 (LFSR)
generator”. ...

The Perl script in Appendix C
takes around 10-15 milliseconds ...
to extract the internal state from
13-15 consecutive transaction IDs.

Also Klein’s 2008.02.06

analysis of IDs in OpenBSD,

NetBSD, FreeBSD, MacOS X:

OpenBSD ported BIND 9 into
their code tree, but rolled
their own PRNG for the DNS
transaction ID field). ... “We
decided ... to use a more
proven algorithm (LCG, Linear
Congruential Generator) instead.
Thanks to this wise decision, the
BIND 9 shipped with OpenBSD
does not have this weakness. The
proactive security of OpenBSD
strikes again.” ... I discovered a
serious weakness in OpenBSD’s
PRNG, which allows an attacker
to predict the next transaction ID.

Also Klein’s 2007 and 2008

analyses of Microsoft IDs.

Bad news, continued:

Many ways for attackers

to beat ID+port randomization,

even if it’s cryptographic.

1. Attack repeatedly.

“An attacker who makes a few

billion random guesses is likely

to succeed at least once; tens of

millions of guesses are adequate

with a colliding attack;” etc.

2. Allocate most UDP ports

to other tasks, non-reusably.



Bad news: Ignorant developers

often whip up breakable ciphers.

See, e.g., Klein’s analysis

leading to 2007.07.24

“emergency” BIND 9 upgrade:

In essence, this is a weak version
(since the output is 16 bits, as
opposed to the traditional 1 bit)
of the well studied cryptosystem
known by many names: “bilateral
stop/go (LFSR) generator”,
“mutually clock controlled (LFSR)
generator” and “mutual (or
bilateral) step-1/step-2 (LFSR)
generator”. ...

The Perl script in Appendix C
takes around 10-15 milliseconds ...
to extract the internal state from
13-15 consecutive transaction IDs.

Also Klein’s 2008.02.06

analysis of IDs in OpenBSD,

NetBSD, FreeBSD, MacOS X:

OpenBSD ported BIND 9 into
their code tree, but rolled
their own PRNG for the DNS
transaction ID field). ... “We
decided ... to use a more
proven algorithm (LCG, Linear
Congruential Generator) instead.
Thanks to this wise decision, the
BIND 9 shipped with OpenBSD
does not have this weakness. The
proactive security of OpenBSD
strikes again.” ... I discovered a
serious weakness in OpenBSD’s
PRNG, which allows an attacker
to predict the next transaction ID.

Also Klein’s 2007 and 2008

analyses of Microsoft IDs.

Bad news, continued:

Many ways for attackers

to beat ID+port randomization,

even if it’s cryptographic.

1. Attack repeatedly.

“An attacker who makes a few

billion random guesses is likely

to succeed at least once; tens of

millions of guesses are adequate

with a colliding attack;” etc.

2. Allocate most UDP ports

to other tasks, non-reusably.



Also Klein’s 2008.02.06

analysis of IDs in OpenBSD,

NetBSD, FreeBSD, MacOS X:

OpenBSD ported BIND 9 into
their code tree, but rolled
their own PRNG for the DNS
transaction ID field). ... “We
decided ... to use a more
proven algorithm (LCG, Linear
Congruential Generator) instead.
Thanks to this wise decision, the
BIND 9 shipped with OpenBSD
does not have this weakness. The
proactive security of OpenBSD
strikes again.” ... I discovered a
serious weakness in OpenBSD’s
PRNG, which allows an attacker
to predict the next transaction ID.

Also Klein’s 2007 and 2008

analyses of Microsoft IDs.

Bad news, continued:

Many ways for attackers

to beat ID+port randomization,

even if it’s cryptographic.

1. Attack repeatedly.

“An attacker who makes a few

billion random guesses is likely

to succeed at least once; tens of

millions of guesses are adequate

with a colliding attack;” etc.

2. Allocate most UDP ports

to other tasks, non-reusably.



Also Klein’s 2008.02.06

analysis of IDs in OpenBSD,

NetBSD, FreeBSD, MacOS X:

OpenBSD ported BIND 9 into
their code tree, but rolled
their own PRNG for the DNS
transaction ID field). ... “We
decided ... to use a more
proven algorithm (LCG, Linear
Congruential Generator) instead.
Thanks to this wise decision, the
BIND 9 shipped with OpenBSD
does not have this weakness. The
proactive security of OpenBSD
strikes again.” ... I discovered a
serious weakness in OpenBSD’s
PRNG, which allows an attacker
to predict the next transaction ID.

Also Klein’s 2007 and 2008

analyses of Microsoft IDs.

Bad news, continued:

Many ways for attackers

to beat ID+port randomization,

even if it’s cryptographic.

1. Attack repeatedly.

“An attacker who makes a few

billion random guesses is likely

to succeed at least once; tens of

millions of guesses are adequate

with a colliding attack;” etc.

2. Allocate most UDP ports

to other tasks, non-reusably.

3. Easy, succeeds instantly:

Sniff the network.



Also Klein’s 2008.02.06

analysis of IDs in OpenBSD,

NetBSD, FreeBSD, MacOS X:

OpenBSD ported BIND 9 into
their code tree, but rolled
their own PRNG for the DNS
transaction ID field). ... “We
decided ... to use a more
proven algorithm (LCG, Linear
Congruential Generator) instead.
Thanks to this wise decision, the
BIND 9 shipped with OpenBSD
does not have this weakness. The
proactive security of OpenBSD
strikes again.” ... I discovered a
serious weakness in OpenBSD’s
PRNG, which allows an attacker
to predict the next transaction ID.

Also Klein’s 2007 and 2008

analyses of Microsoft IDs.

Bad news, continued:

Many ways for attackers

to beat ID+port randomization,

even if it’s cryptographic.

1. Attack repeatedly.

“An attacker who makes a few

billion random guesses is likely

to succeed at least once; tens of

millions of guesses are adequate

with a colliding attack;” etc.

2. Allocate most UDP ports

to other tasks, non-reusably.

3. Easy, succeeds instantly:

Sniff the network.

Colliding attacks on caches

(2001 Bernstein),

aka “birthday attacks”:

Attacker triggers many queries

for one name lsec.be.

Typical cache allows 200 queries,

using 200 ID+port combinations.

Attacker sends forgeries

to many ID+port combinations

for this name lsec.be.

Any ID+port collision succeeds;

i.e., each forgery attempt

has 200=232 chance of success.
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This architecture means that

the www.lsec.be address

is controlled

by the DNS root server;

by the .be DNS server; and

by the lsec.be DNS server.

This isn’t just the

lsec.be DNS server!

e.g. 2001 incident:

An attacker fooled

Internet Central Headquarters

into accepting fake data

for microsoft.com.
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