
Attacks on DNS

D. J. Bernstein

University of Illinois at Chicago

The Domain Name System

cert.org wants to see

http://www.lsec.be.

'& %$ ! "#Browser at cert.org

'& %$ ! "#Administrator at lsec.be

“The web server

www.lsec.be

has IP address

81.246.94.54.”

OO

Now cert.org

retrieves web page from

IP address 81.246.94.54.



Attacks on DNS

D. J. Bernstein

University of Illinois at Chicago

The Domain Name System

cert.org wants to see

http://www.lsec.be.

'& %$ ! "#Browser at cert.org

'& %$ ! "#Administrator at lsec.be

“The web server

www.lsec.be

has IP address

81.246.94.54.”

OO

Now cert.org

retrieves web page from

IP address 81.246.94.54.

Same for Internet mail.

cert.org has mail

to deliver to someone@lsec.be.

'& %$ ! "#Mail client at cert.org

'& %$ ! "#Administrator at lsec.be

“The mail server for

lsec.be

has IP address

80.92.66.174.”

OO

Now cert.org

delivers mail to

IP address 80.92.66.174.



Attacks on DNS

D. J. Bernstein

University of Illinois at Chicago

The Domain Name System

cert.org wants to see

http://www.lsec.be.

'& %$ ! "#Browser at cert.org

'& %$ ! "#Administrator at lsec.be

“The web server

www.lsec.be

has IP address

81.246.94.54.”

OO

Now cert.org

retrieves web page from

IP address 81.246.94.54.

Same for Internet mail.

cert.org has mail

to deliver to someone@lsec.be.

'& %$ ! "#Mail client at cert.org

'& %$ ! "#Administrator at lsec.be

“The mail server for

lsec.be

has IP address

80.92.66.174.”

OO

Now cert.org

delivers mail to

IP address 80.92.66.174.



Attacks on DNS

D. J. Bernstein

University of Illinois at Chicago

The Domain Name System

cert.org wants to see

http://www.lsec.be.

'& %$ ! "#Browser at cert.org

'& %$ ! "#Administrator at lsec.be

“The web server

www.lsec.be

has IP address

81.246.94.54.”

OO

Now cert.org

retrieves web page from

IP address 81.246.94.54.

Same for Internet mail.

cert.org has mail

to deliver to someone@lsec.be.

'& %$ ! "#Mail client at cert.org

'& %$ ! "#Administrator at lsec.be

“The mail server for

lsec.be

has IP address

80.92.66.174.”

OO

Now cert.org

delivers mail to

IP address 80.92.66.174.



The Domain Name System

cert.org wants to see

http://www.lsec.be.

'& %$ ! "#Browser at cert.org

'& %$ ! "#Administrator at lsec.be

“The web server

www.lsec.be

has IP address

81.246.94.54.”

OO

Now cert.org

retrieves web page from

IP address 81.246.94.54.

Same for Internet mail.

cert.org has mail

to deliver to someone@lsec.be.

'& %$ ! "#Mail client at cert.org

'& %$ ! "#Administrator at lsec.be

“The mail server for

lsec.be

has IP address

80.92.66.174.”

OO

Now cert.org

delivers mail to

IP address 80.92.66.174.



The Domain Name System

cert.org wants to see

http://www.lsec.be.

'& %$ ! "#Browser at cert.org

'& %$ ! "#Administrator at lsec.be

“The web server

www.lsec.be

has IP address

81.246.94.54.”

OO

Now cert.org

retrieves web page from

IP address 81.246.94.54.

Same for Internet mail.

cert.org has mail

to deliver to someone@lsec.be.

'& %$ ! "#Mail client at cert.org

'& %$ ! "#Administrator at lsec.be

“The mail server for

lsec.be

has IP address

80.92.66.174.”

OO

Now cert.org

delivers mail to

IP address 80.92.66.174.

Forging DNS packets

cert.org has mail

to deliver to someone@lsec.be.

'& %$ ! "#Mail client at cert.org

'& %$ ! "#Attacker anywhere on network

“The mail server for

lsec.be

has IP address

157.22.245.20.”

OO

Now cert.org

delivers mail to

IP address 157.22.245.20,

actually the attacker’s machine.



The Domain Name System

cert.org wants to see

http://www.lsec.be.

'& %$ ! "#Browser at cert.org

'& %$ ! "#Administrator at lsec.be

“The web server

www.lsec.be

has IP address

81.246.94.54.”

OO

Now cert.org

retrieves web page from

IP address 81.246.94.54.

Same for Internet mail.

cert.org has mail

to deliver to someone@lsec.be.

'& %$ ! "#Mail client at cert.org

'& %$ ! "#Administrator at lsec.be

“The mail server for

lsec.be

has IP address

80.92.66.174.”

OO

Now cert.org

delivers mail to

IP address 80.92.66.174.

Forging DNS packets

cert.org has mail

to deliver to someone@lsec.be.

'& %$ ! "#Mail client at cert.org

'& %$ ! "#Attacker anywhere on network

“The mail server for

lsec.be

has IP address

157.22.245.20.”

OO

Now cert.org

delivers mail to

IP address 157.22.245.20,

actually the attacker’s machine.



The Domain Name System

cert.org wants to see

http://www.lsec.be.

'& %$ ! "#Browser at cert.org

'& %$ ! "#Administrator at lsec.be

“The web server

www.lsec.be

has IP address

81.246.94.54.”

OO

Now cert.org

retrieves web page from

IP address 81.246.94.54.

Same for Internet mail.

cert.org has mail

to deliver to someone@lsec.be.

'& %$ ! "#Mail client at cert.org

'& %$ ! "#Administrator at lsec.be

“The mail server for

lsec.be

has IP address

80.92.66.174.”

OO

Now cert.org

delivers mail to

IP address 80.92.66.174.

Forging DNS packets

cert.org has mail

to deliver to someone@lsec.be.

'& %$ ! "#Mail client at cert.org

'& %$ ! "#Attacker anywhere on network

“The mail server for

lsec.be

has IP address

157.22.245.20.”

OO

Now cert.org

delivers mail to

IP address 157.22.245.20,

actually the attacker’s machine.



Same for Internet mail.

cert.org has mail

to deliver to someone@lsec.be.

'& %$ ! "#Mail client at cert.org

'& %$ ! "#Administrator at lsec.be

“The mail server for

lsec.be

has IP address

80.92.66.174.”

OO

Now cert.org

delivers mail to

IP address 80.92.66.174.

Forging DNS packets

cert.org has mail

to deliver to someone@lsec.be.

'& %$ ! "#Mail client at cert.org

'& %$ ! "#Attacker anywhere on network

“The mail server for

lsec.be

has IP address

157.22.245.20.”

OO

Now cert.org

delivers mail to

IP address 157.22.245.20,

actually the attacker’s machine.



Same for Internet mail.

cert.org has mail

to deliver to someone@lsec.be.

'& %$ ! "#Mail client at cert.org

'& %$ ! "#Administrator at lsec.be

“The mail server for

lsec.be

has IP address

80.92.66.174.”

OO

Now cert.org

delivers mail to

IP address 80.92.66.174.

Forging DNS packets

cert.org has mail

to deliver to someone@lsec.be.

'& %$ ! "#Mail client at cert.org

'& %$ ! "#Attacker anywhere on network

“The mail server for

lsec.be

has IP address

157.22.245.20.”

OO

Now cert.org

delivers mail to

IP address 157.22.245.20,

actually the attacker’s machine.

“Can attackers do that?”



Same for Internet mail.

cert.org has mail

to deliver to someone@lsec.be.

'& %$ ! "#Mail client at cert.org

'& %$ ! "#Administrator at lsec.be

“The mail server for

lsec.be

has IP address

80.92.66.174.”

OO

Now cert.org

delivers mail to

IP address 80.92.66.174.

Forging DNS packets

cert.org has mail

to deliver to someone@lsec.be.

'& %$ ! "#Mail client at cert.org

'& %$ ! "#Attacker anywhere on network

“The mail server for

lsec.be

has IP address

157.22.245.20.”

OO

Now cert.org

delivers mail to

IP address 157.22.245.20,

actually the attacker’s machine.

“Can attackers do that?”



Same for Internet mail.

cert.org has mail

to deliver to someone@lsec.be.

'& %$ ! "#Mail client at cert.org

'& %$ ! "#Administrator at lsec.be

“The mail server for

lsec.be

has IP address

80.92.66.174.”

OO

Now cert.org

delivers mail to

IP address 80.92.66.174.

Forging DNS packets

cert.org has mail

to deliver to someone@lsec.be.

'& %$ ! "#Mail client at cert.org

'& %$ ! "#Attacker anywhere on network

“The mail server for

lsec.be

has IP address

157.22.245.20.”

OO

Now cert.org

delivers mail to

IP address 157.22.245.20,

actually the attacker’s machine.

“Can attackers do that?”



Forging DNS packets

cert.org has mail

to deliver to someone@lsec.be.

'& %$ ! "#Mail client at cert.org

'& %$ ! "#Attacker anywhere on network

“The mail server for

lsec.be

has IP address

157.22.245.20.”

OO

Now cert.org

delivers mail to

IP address 157.22.245.20,

actually the attacker’s machine.

“Can attackers do that?”



Forging DNS packets

cert.org has mail

to deliver to someone@lsec.be.

'& %$ ! "#Mail client at cert.org

'& %$ ! "#Attacker anywhere on network

“The mail server for

lsec.be

has IP address

157.22.245.20.”

OO

Now cert.org

delivers mail to

IP address 157.22.245.20,

actually the attacker’s machine.

“Can attackers do that?”

— Yes.



Forging DNS packets

cert.org has mail

to deliver to someone@lsec.be.

'& %$ ! "#Mail client at cert.org

'& %$ ! "#Attacker anywhere on network

“The mail server for

lsec.be

has IP address

157.22.245.20.”

OO

Now cert.org

delivers mail to

IP address 157.22.245.20,

actually the attacker’s machine.

“Can attackers do that?”

— Yes.

“Really?”



Forging DNS packets

cert.org has mail

to deliver to someone@lsec.be.

'& %$ ! "#Mail client at cert.org

'& %$ ! "#Attacker anywhere on network

“The mail server for

lsec.be

has IP address

157.22.245.20.”

OO

Now cert.org

delivers mail to

IP address 157.22.245.20,

actually the attacker’s machine.

“Can attackers do that?”

— Yes.

“Really?” — Yes.



Forging DNS packets

cert.org has mail

to deliver to someone@lsec.be.

'& %$ ! "#Mail client at cert.org

'& %$ ! "#Attacker anywhere on network

“The mail server for

lsec.be

has IP address

157.22.245.20.”

OO

Now cert.org

delivers mail to

IP address 157.22.245.20,

actually the attacker’s machine.

“Can attackers do that?”

— Yes.

“Really?” — Yes.

“Don’t the clients check

who’s sending information?”



Forging DNS packets

cert.org has mail

to deliver to someone@lsec.be.

'& %$ ! "#Mail client at cert.org

'& %$ ! "#Attacker anywhere on network

“The mail server for

lsec.be

has IP address

157.22.245.20.”

OO

Now cert.org

delivers mail to

IP address 157.22.245.20,

actually the attacker’s machine.

“Can attackers do that?”

— Yes.

“Really?” — Yes.

“Don’t the clients check

who’s sending information?”

— Yes, but the attacker

forges the sender address;

as easy as forging address

on a physically mailed postcard.



Forging DNS packets

cert.org has mail

to deliver to someone@lsec.be.

'& %$ ! "#Mail client at cert.org

'& %$ ! "#Attacker anywhere on network

“The mail server for

lsec.be

has IP address

157.22.245.20.”

OO

Now cert.org

delivers mail to

IP address 157.22.245.20,

actually the attacker’s machine.

“Can attackers do that?”

— Yes.

“Really?” — Yes.

“Don’t the clients check

who’s sending information?”

— Yes, but the attacker

forges the sender address;

as easy as forging address

on a physically mailed postcard.

Real postcard from administrator:
From: lsec.be admin

To: cert.org mail client

The mail server for lsec.be has

IP address 80.92.66.174. Hoping

to have informed you sufficiently!

Forged postcard from attacker:
From: lsec.be admin

To: cert.org mail client

The mail server for lsec.be has

IP address 157.22.245.20. Hoping

to have informed you sufficiently!



Forging DNS packets

cert.org has mail

to deliver to someone@lsec.be.

'& %$ ! "#Mail client at cert.org

'& %$ ! "#Attacker anywhere on network

“The mail server for

lsec.be

has IP address

157.22.245.20.”

OO

Now cert.org

delivers mail to

IP address 157.22.245.20,

actually the attacker’s machine.

“Can attackers do that?”

— Yes.

“Really?” — Yes.

“Don’t the clients check

who’s sending information?”

— Yes, but the attacker

forges the sender address;

as easy as forging address

on a physically mailed postcard.

Real postcard from administrator:
From: lsec.be admin

To: cert.org mail client

The mail server for lsec.be has

IP address 80.92.66.174. Hoping

to have informed you sufficiently!

Forged postcard from attacker:
From: lsec.be admin

To: cert.org mail client

The mail server for lsec.be has

IP address 157.22.245.20. Hoping

to have informed you sufficiently!



Forging DNS packets

cert.org has mail

to deliver to someone@lsec.be.

'& %$ ! "#Mail client at cert.org

'& %$ ! "#Attacker anywhere on network

“The mail server for

lsec.be

has IP address

157.22.245.20.”

OO

Now cert.org

delivers mail to

IP address 157.22.245.20,

actually the attacker’s machine.

“Can attackers do that?”

— Yes.

“Really?” — Yes.

“Don’t the clients check

who’s sending information?”

— Yes, but the attacker

forges the sender address;

as easy as forging address

on a physically mailed postcard.

Real postcard from administrator:
From: lsec.be admin

To: cert.org mail client

The mail server for lsec.be has

IP address 80.92.66.174. Hoping

to have informed you sufficiently!

Forged postcard from attacker:
From: lsec.be admin

To: cert.org mail client

The mail server for lsec.be has

IP address 157.22.245.20. Hoping

to have informed you sufficiently!



“Can attackers do that?”

— Yes.

“Really?” — Yes.

“Don’t the clients check

who’s sending information?”

— Yes, but the attacker

forges the sender address;

as easy as forging address

on a physically mailed postcard.

Real postcard from administrator:
From: lsec.be admin

To: cert.org mail client

The mail server for lsec.be has

IP address 80.92.66.174. Hoping

to have informed you sufficiently!

Forged postcard from attacker:
From: lsec.be admin

To: cert.org mail client

The mail server for lsec.be has

IP address 157.22.245.20. Hoping

to have informed you sufficiently!



“Can attackers do that?”

— Yes.

“Really?” — Yes.

“Don’t the clients check

who’s sending information?”

— Yes, but the attacker

forges the sender address;

as easy as forging address

on a physically mailed postcard.

Real postcard from administrator:
From: lsec.be admin

To: cert.org mail client

The mail server for lsec.be has

IP address 80.92.66.174. Hoping

to have informed you sufficiently!

Forged postcard from attacker:
From: lsec.be admin

To: cert.org mail client

The mail server for lsec.be has

IP address 157.22.245.20. Hoping

to have informed you sufficiently!

Real packet from administrator:
From: lsec.be admin

To: cert.org mail client

The mail server for lsec.be has

IP address 80.92.66.174. Hoping

to have informed you sufficiently!

Forged packet from attacker:
From: lsec.be admin

To: cert.org mail client

The mail server for lsec.be has

IP address 157.22.245.20. Hoping

to have informed you sufficiently!



“Can attackers do that?”

— Yes.

“Really?” — Yes.

“Don’t the clients check

who’s sending information?”

— Yes, but the attacker

forges the sender address;

as easy as forging address

on a physically mailed postcard.

Real postcard from administrator:
From: lsec.be admin

To: cert.org mail client

The mail server for lsec.be has

IP address 80.92.66.174. Hoping

to have informed you sufficiently!

Forged postcard from attacker:
From: lsec.be admin

To: cert.org mail client

The mail server for lsec.be has

IP address 157.22.245.20. Hoping

to have informed you sufficiently!

Real packet from administrator:
From: lsec.be admin

To: cert.org mail client

The mail server for lsec.be has

IP address 80.92.66.174. Hoping

to have informed you sufficiently!

Forged packet from attacker:
From: lsec.be admin

To: cert.org mail client

The mail server for lsec.be has

IP address 157.22.245.20. Hoping

to have informed you sufficiently!



“Can attackers do that?”

— Yes.

“Really?” — Yes.

“Don’t the clients check

who’s sending information?”

— Yes, but the attacker

forges the sender address;

as easy as forging address

on a physically mailed postcard.

Real postcard from administrator:
From: lsec.be admin

To: cert.org mail client

The mail server for lsec.be has

IP address 80.92.66.174. Hoping

to have informed you sufficiently!

Forged postcard from attacker:
From: lsec.be admin

To: cert.org mail client

The mail server for lsec.be has

IP address 157.22.245.20. Hoping

to have informed you sufficiently!

Real packet from administrator:
From: lsec.be admin

To: cert.org mail client

The mail server for lsec.be has

IP address 80.92.66.174. Hoping

to have informed you sufficiently!

Forged packet from attacker:
From: lsec.be admin

To: cert.org mail client

The mail server for lsec.be has

IP address 157.22.245.20. Hoping

to have informed you sufficiently!



Real postcard from administrator:
From: lsec.be admin

To: cert.org mail client

The mail server for lsec.be has

IP address 80.92.66.174. Hoping

to have informed you sufficiently!

Forged postcard from attacker:
From: lsec.be admin

To: cert.org mail client

The mail server for lsec.be has

IP address 157.22.245.20. Hoping

to have informed you sufficiently!

Real packet from administrator:
From: lsec.be admin

To: cert.org mail client

The mail server for lsec.be has

IP address 80.92.66.174. Hoping

to have informed you sufficiently!

Forged packet from attacker:
From: lsec.be admin

To: cert.org mail client

The mail server for lsec.be has

IP address 157.22.245.20. Hoping

to have informed you sufficiently!



Real postcard from administrator:
From: lsec.be admin

To: cert.org mail client

The mail server for lsec.be has

IP address 80.92.66.174. Hoping

to have informed you sufficiently!

Forged postcard from attacker:
From: lsec.be admin

To: cert.org mail client

The mail server for lsec.be has

IP address 157.22.245.20. Hoping

to have informed you sufficiently!

Real packet from administrator:
From: lsec.be admin

To: cert.org mail client

The mail server for lsec.be has

IP address 80.92.66.174. Hoping

to have informed you sufficiently!

Forged packet from attacker:
From: lsec.be admin

To: cert.org mail client

The mail server for lsec.be has

IP address 157.22.245.20. Hoping

to have informed you sufficiently!

“Is the client always

listening for the address of

lsec.be?”



Real postcard from administrator:
From: lsec.be admin

To: cert.org mail client

The mail server for lsec.be has

IP address 80.92.66.174. Hoping

to have informed you sufficiently!

Forged postcard from attacker:
From: lsec.be admin

To: cert.org mail client

The mail server for lsec.be has

IP address 157.22.245.20. Hoping

to have informed you sufficiently!

Real packet from administrator:
From: lsec.be admin

To: cert.org mail client

The mail server for lsec.be has

IP address 80.92.66.174. Hoping

to have informed you sufficiently!

Forged packet from attacker:
From: lsec.be admin

To: cert.org mail client

The mail server for lsec.be has

IP address 157.22.245.20. Hoping

to have informed you sufficiently!

“Is the client always

listening for the address of

lsec.be?”



Real postcard from administrator:
From: lsec.be admin

To: cert.org mail client

The mail server for lsec.be has

IP address 80.92.66.174. Hoping

to have informed you sufficiently!

Forged postcard from attacker:
From: lsec.be admin

To: cert.org mail client

The mail server for lsec.be has

IP address 157.22.245.20. Hoping

to have informed you sufficiently!

Real packet from administrator:
From: lsec.be admin

To: cert.org mail client

The mail server for lsec.be has

IP address 80.92.66.174. Hoping

to have informed you sufficiently!

Forged packet from attacker:
From: lsec.be admin

To: cert.org mail client

The mail server for lsec.be has

IP address 157.22.245.20. Hoping

to have informed you sufficiently!

“Is the client always

listening for the address of

lsec.be?”



Real packet from administrator:
From: lsec.be admin

To: cert.org mail client

The mail server for lsec.be has

IP address 80.92.66.174. Hoping

to have informed you sufficiently!

Forged packet from attacker:
From: lsec.be admin

To: cert.org mail client

The mail server for lsec.be has

IP address 157.22.245.20. Hoping

to have informed you sufficiently!

“Is the client always

listening for the address of

lsec.be?”



Real packet from administrator:
From: lsec.be admin

To: cert.org mail client

The mail server for lsec.be has

IP address 80.92.66.174. Hoping

to have informed you sufficiently!

Forged packet from attacker:
From: lsec.be admin

To: cert.org mail client

The mail server for lsec.be has

IP address 157.22.245.20. Hoping

to have informed you sufficiently!

“Is the client always

listening for the address of

lsec.be?”

— No.

When client wants to know

address of lsec.be,

it sends a query

to the administrator,

and listens for the response.

Forged lsec.be information is

effective if it arrives at this time.



Real packet from administrator:
From: lsec.be admin

To: cert.org mail client

The mail server for lsec.be has

IP address 80.92.66.174. Hoping

to have informed you sufficiently!

Forged packet from attacker:
From: lsec.be admin

To: cert.org mail client

The mail server for lsec.be has

IP address 157.22.245.20. Hoping

to have informed you sufficiently!

“Is the client always

listening for the address of

lsec.be?”

— No.

When client wants to know

address of lsec.be,

it sends a query

to the administrator,

and listens for the response.

Forged lsec.be information is

effective if it arrives at this time.

Many ways for attackers to

time forgeries properly:

1. Attack repeatedly.

One of the forgeries will

arrive at the right time.

2. Poke the client

to trigger a known lookup.

3. Attack caches

a long time in advance.



Real packet from administrator:
From: lsec.be admin

To: cert.org mail client

The mail server for lsec.be has

IP address 80.92.66.174. Hoping

to have informed you sufficiently!

Forged packet from attacker:
From: lsec.be admin

To: cert.org mail client

The mail server for lsec.be has

IP address 157.22.245.20. Hoping

to have informed you sufficiently!

“Is the client always

listening for the address of

lsec.be?”

— No.

When client wants to know

address of lsec.be,

it sends a query

to the administrator,

and listens for the response.

Forged lsec.be information is

effective if it arrives at this time.

Many ways for attackers to

time forgeries properly:

1. Attack repeatedly.

One of the forgeries will

arrive at the right time.

2. Poke the client

to trigger a known lookup.

3. Attack caches

a long time in advance.



Real packet from administrator:
From: lsec.be admin

To: cert.org mail client

The mail server for lsec.be has

IP address 80.92.66.174. Hoping

to have informed you sufficiently!

Forged packet from attacker:
From: lsec.be admin

To: cert.org mail client

The mail server for lsec.be has

IP address 157.22.245.20. Hoping

to have informed you sufficiently!

“Is the client always

listening for the address of

lsec.be?”

— No.

When client wants to know

address of lsec.be,

it sends a query

to the administrator,

and listens for the response.

Forged lsec.be information is

effective if it arrives at this time.

Many ways for attackers to

time forgeries properly:

1. Attack repeatedly.

One of the forgeries will

arrive at the right time.

2. Poke the client

to trigger a known lookup.

3. Attack caches

a long time in advance.



“Is the client always

listening for the address of

lsec.be?”

— No.

When client wants to know

address of lsec.be,

it sends a query

to the administrator,

and listens for the response.

Forged lsec.be information is

effective if it arrives at this time.

Many ways for attackers to

time forgeries properly:

1. Attack repeatedly.

One of the forgeries will

arrive at the right time.

2. Poke the client

to trigger a known lookup.

3. Attack caches

a long time in advance.



“Is the client always

listening for the address of

lsec.be?”

— No.

When client wants to know

address of lsec.be,

it sends a query

to the administrator,

and listens for the response.

Forged lsec.be information is

effective if it arrives at this time.

Many ways for attackers to

time forgeries properly:

1. Attack repeatedly.

One of the forgeries will

arrive at the right time.

2. Poke the client

to trigger a known lookup.

3. Attack caches

a long time in advance.

4. Easy, succeeds instantly:

Sniff the network.



“Is the client always

listening for the address of

lsec.be?”

— No.

When client wants to know

address of lsec.be,

it sends a query

to the administrator,

and listens for the response.

Forged lsec.be information is

effective if it arrives at this time.

Many ways for attackers to

time forgeries properly:

1. Attack repeatedly.

One of the forgeries will

arrive at the right time.

2. Poke the client

to trigger a known lookup.

3. Attack caches

a long time in advance.

4. Easy, succeeds instantly:

Sniff the network.

Browser at cert.org

DNS cache

WV UT
PQ RS

OO

Administrator at lsec.be?> =<89 :;
OO

“The web server

www.lsec.be

has IP address

81.246.94.54.”

ck

Browser pulls data from

DNS cache at cert.org.

Cache pulls data from

administrator if it

doesn’t already have the data.



“Is the client always

listening for the address of

lsec.be?”

— No.

When client wants to know

address of lsec.be,

it sends a query

to the administrator,

and listens for the response.

Forged lsec.be information is

effective if it arrives at this time.

Many ways for attackers to

time forgeries properly:

1. Attack repeatedly.

One of the forgeries will

arrive at the right time.

2. Poke the client

to trigger a known lookup.

3. Attack caches

a long time in advance.

4. Easy, succeeds instantly:

Sniff the network.

Browser at cert.org

DNS cache

WV UT
PQ RS

OO

Administrator at lsec.be?> =<89 :;
OO

“The web server

www.lsec.be

has IP address

81.246.94.54.”

ck

Browser pulls data from

DNS cache at cert.org.

Cache pulls data from

administrator if it

doesn’t already have the data.



“Is the client always

listening for the address of

lsec.be?”

— No.

When client wants to know

address of lsec.be,

it sends a query

to the administrator,

and listens for the response.

Forged lsec.be information is

effective if it arrives at this time.

Many ways for attackers to

time forgeries properly:

1. Attack repeatedly.

One of the forgeries will

arrive at the right time.

2. Poke the client

to trigger a known lookup.

3. Attack caches

a long time in advance.

4. Easy, succeeds instantly:

Sniff the network.

Browser at cert.org

DNS cache

WV UT
PQ RS

OO

Administrator at lsec.be?> =<89 :;
OO

“The web server

www.lsec.be

has IP address

81.246.94.54.”

ck

Browser pulls data from

DNS cache at cert.org.

Cache pulls data from

administrator if it

doesn’t already have the data.



Many ways for attackers to

time forgeries properly:

1. Attack repeatedly.

One of the forgeries will

arrive at the right time.

2. Poke the client

to trigger a known lookup.

3. Attack caches

a long time in advance.

4. Easy, succeeds instantly:

Sniff the network.

Browser at cert.org

DNS cache

WV UT
PQ RS

OO

Administrator at lsec.be?> =<89 :;
OO

“The web server

www.lsec.be

has IP address

81.246.94.54.”

ck

Browser pulls data from

DNS cache at cert.org.

Cache pulls data from

administrator if it

doesn’t already have the data.



Many ways for attackers to

time forgeries properly:

1. Attack repeatedly.

One of the forgeries will

arrive at the right time.

2. Poke the client

to trigger a known lookup.

3. Attack caches

a long time in advance.

4. Easy, succeeds instantly:

Sniff the network.

Browser at cert.org

DNS cache

WV UT
PQ RS

OO

Administrator at lsec.be?> =<89 :;
OO

“The web server

www.lsec.be

has IP address

81.246.94.54.”

ck

Browser pulls data from

DNS cache at cert.org.

Cache pulls data from

administrator if it

doesn’t already have the data.

A typical blind attack:

Attacker sets up a web page

supersecuritytools.to,

including an inline image

from www.lsec.be.

Victim asks browser to view

supersecuritytools.to.

Attacker sees HTTP request,

sends web page to browser,

waits a moment (for browser to

ask cache about www.lsec.be),

and sends the DNS cache

forged data for www.lsec.be.



Many ways for attackers to

time forgeries properly:

1. Attack repeatedly.

One of the forgeries will

arrive at the right time.

2. Poke the client

to trigger a known lookup.

3. Attack caches

a long time in advance.

4. Easy, succeeds instantly:

Sniff the network.

Browser at cert.org

DNS cache

WV UT
PQ RS

OO

Administrator at lsec.be?> =<89 :;
OO

“The web server

www.lsec.be

has IP address

81.246.94.54.”

ck

Browser pulls data from

DNS cache at cert.org.

Cache pulls data from

administrator if it

doesn’t already have the data.

A typical blind attack:

Attacker sets up a web page

supersecuritytools.to,

including an inline image

from www.lsec.be.

Victim asks browser to view

supersecuritytools.to.

Attacker sees HTTP request,

sends web page to browser,

waits a moment (for browser to

ask cache about www.lsec.be),

and sends the DNS cache

forged data for www.lsec.be.



Many ways for attackers to

time forgeries properly:

1. Attack repeatedly.

One of the forgeries will

arrive at the right time.

2. Poke the client

to trigger a known lookup.

3. Attack caches

a long time in advance.

4. Easy, succeeds instantly:

Sniff the network.

Browser at cert.org

DNS cache

WV UT
PQ RS

OO

Administrator at lsec.be?> =<89 :;
OO

“The web server

www.lsec.be

has IP address

81.246.94.54.”

ck

Browser pulls data from

DNS cache at cert.org.

Cache pulls data from

administrator if it

doesn’t already have the data.

A typical blind attack:

Attacker sets up a web page

supersecuritytools.to,

including an inline image

from www.lsec.be.

Victim asks browser to view

supersecuritytools.to.

Attacker sees HTTP request,

sends web page to browser,

waits a moment (for browser to

ask cache about www.lsec.be),

and sends the DNS cache

forged data for www.lsec.be.



Browser at cert.org

DNS cache

WV UT
PQ RS

OO

Administrator at lsec.be?> =<89 :;
OO

“The web server

www.lsec.be

has IP address

81.246.94.54.”

ck

Browser pulls data from

DNS cache at cert.org.

Cache pulls data from

administrator if it

doesn’t already have the data.

A typical blind attack:

Attacker sets up a web page

supersecuritytools.to,

including an inline image

from www.lsec.be.

Victim asks browser to view

supersecuritytools.to.

Attacker sees HTTP request,

sends web page to browser,

waits a moment (for browser to

ask cache about www.lsec.be),

and sends the DNS cache

forged data for www.lsec.be.



Browser at cert.org

DNS cache

WV UT
PQ RS

OO

Administrator at lsec.be?> =<89 :;
OO

“The web server

www.lsec.be

has IP address

81.246.94.54.”

ck

Browser pulls data from

DNS cache at cert.org.

Cache pulls data from

administrator if it

doesn’t already have the data.

A typical blind attack:

Attacker sets up a web page

supersecuritytools.to,

including an inline image

from www.lsec.be.

Victim asks browser to view

supersecuritytools.to.

Attacker sees HTTP request,

sends web page to browser,

waits a moment (for browser to

ask cache about www.lsec.be),

and sends the DNS cache

forged data for www.lsec.be.

“Doesn’t the attacker have to

win a race against the

legitimate DNS packets

from the administrator at

lsec.be?”



Browser at cert.org

DNS cache

WV UT
PQ RS

OO

Administrator at lsec.be?> =<89 :;
OO

“The web server

www.lsec.be

has IP address

81.246.94.54.”

ck

Browser pulls data from

DNS cache at cert.org.

Cache pulls data from

administrator if it

doesn’t already have the data.

A typical blind attack:

Attacker sets up a web page

supersecuritytools.to,

including an inline image

from www.lsec.be.

Victim asks browser to view

supersecuritytools.to.

Attacker sees HTTP request,

sends web page to browser,

waits a moment (for browser to

ask cache about www.lsec.be),

and sends the DNS cache

forged data for www.lsec.be.

“Doesn’t the attacker have to

win a race against the

legitimate DNS packets

from the administrator at

lsec.be?”



Browser at cert.org

DNS cache

WV UT
PQ RS

OO

Administrator at lsec.be?> =<89 :;
OO

“The web server

www.lsec.be

has IP address

81.246.94.54.”

ck

Browser pulls data from

DNS cache at cert.org.

Cache pulls data from

administrator if it

doesn’t already have the data.

A typical blind attack:

Attacker sets up a web page

supersecuritytools.to,

including an inline image

from www.lsec.be.

Victim asks browser to view

supersecuritytools.to.

Attacker sees HTTP request,

sends web page to browser,

waits a moment (for browser to

ask cache about www.lsec.be),

and sends the DNS cache

forged data for www.lsec.be.

“Doesn’t the attacker have to

win a race against the

legitimate DNS packets

from the administrator at

lsec.be?”



A typical blind attack:

Attacker sets up a web page

supersecuritytools.to,

including an inline image

from www.lsec.be.

Victim asks browser to view

supersecuritytools.to.

Attacker sees HTTP request,

sends web page to browser,

waits a moment (for browser to

ask cache about www.lsec.be),

and sends the DNS cache

forged data for www.lsec.be.

“Doesn’t the attacker have to

win a race against the

legitimate DNS packets

from the administrator at

lsec.be?”



A typical blind attack:

Attacker sets up a web page

supersecuritytools.to,

including an inline image

from www.lsec.be.

Victim asks browser to view

supersecuritytools.to.

Attacker sees HTTP request,

sends web page to browser,

waits a moment (for browser to

ask cache about www.lsec.be),

and sends the DNS cache

forged data for www.lsec.be.

“Doesn’t the attacker have to

win a race against the

legitimate DNS packets

from the administrator at

lsec.be?”

— Yes, but many ways for

attackers to win race:

1. Deafen the legitimate server.

2. Mute the legitimate server.

3. Poke-jab-jab-jab-jab-jab.



A typical blind attack:

Attacker sets up a web page

supersecuritytools.to,

including an inline image

from www.lsec.be.

Victim asks browser to view

supersecuritytools.to.

Attacker sees HTTP request,

sends web page to browser,

waits a moment (for browser to

ask cache about www.lsec.be),

and sends the DNS cache

forged data for www.lsec.be.

“Doesn’t the attacker have to

win a race against the

legitimate DNS packets

from the administrator at

lsec.be?”

— Yes, but many ways for

attackers to win race:

1. Deafen the legitimate server.

2. Mute the legitimate server.

3. Poke-jab-jab-jab-jab-jab.

4. Easy, succeeds instantly:

Sniff the network.



A typical blind attack:

Attacker sets up a web page

supersecuritytools.to,

including an inline image

from www.lsec.be.

Victim asks browser to view

supersecuritytools.to.

Attacker sees HTTP request,

sends web page to browser,

waits a moment (for browser to

ask cache about www.lsec.be),

and sends the DNS cache

forged data for www.lsec.be.

“Doesn’t the attacker have to

win a race against the

legitimate DNS packets

from the administrator at

lsec.be?”

— Yes, but many ways for

attackers to win race:

1. Deafen the legitimate server.

2. Mute the legitimate server.

3. Poke-jab-jab-jab-jab-jab.

4. Easy, succeeds instantly:

Sniff the network.

Typical combined blind attack:

Attacker floods lsec.be servers

with queries that consume

all available CPU time,

or floods lsec.be network

with packets that consume

all available network capacity.

Attacker pokes the client to

trigger an lsec.be lookup.

Attacker immediately sends

a series of forged packets

to the DNS cache.



A typical blind attack:

Attacker sets up a web page

supersecuritytools.to,

including an inline image

from www.lsec.be.

Victim asks browser to view

supersecuritytools.to.

Attacker sees HTTP request,

sends web page to browser,

waits a moment (for browser to

ask cache about www.lsec.be),

and sends the DNS cache

forged data for www.lsec.be.

“Doesn’t the attacker have to

win a race against the

legitimate DNS packets

from the administrator at

lsec.be?”

— Yes, but many ways for

attackers to win race:

1. Deafen the legitimate server.

2. Mute the legitimate server.

3. Poke-jab-jab-jab-jab-jab.

4. Easy, succeeds instantly:

Sniff the network.

Typical combined blind attack:

Attacker floods lsec.be servers

with queries that consume

all available CPU time,

or floods lsec.be network

with packets that consume

all available network capacity.

Attacker pokes the client to

trigger an lsec.be lookup.

Attacker immediately sends

a series of forged packets

to the DNS cache.



A typical blind attack:

Attacker sets up a web page

supersecuritytools.to,

including an inline image

from www.lsec.be.

Victim asks browser to view

supersecuritytools.to.

Attacker sees HTTP request,

sends web page to browser,

waits a moment (for browser to

ask cache about www.lsec.be),

and sends the DNS cache

forged data for www.lsec.be.

“Doesn’t the attacker have to

win a race against the

legitimate DNS packets

from the administrator at

lsec.be?”

— Yes, but many ways for

attackers to win race:

1. Deafen the legitimate server.

2. Mute the legitimate server.

3. Poke-jab-jab-jab-jab-jab.

4. Easy, succeeds instantly:

Sniff the network.

Typical combined blind attack:

Attacker floods lsec.be servers

with queries that consume

all available CPU time,

or floods lsec.be network

with packets that consume

all available network capacity.

Attacker pokes the client to

trigger an lsec.be lookup.

Attacker immediately sends

a series of forged packets

to the DNS cache.



“Doesn’t the attacker have to

win a race against the

legitimate DNS packets

from the administrator at

lsec.be?”

— Yes, but many ways for

attackers to win race:

1. Deafen the legitimate server.

2. Mute the legitimate server.

3. Poke-jab-jab-jab-jab-jab.

4. Easy, succeeds instantly:

Sniff the network.

Typical combined blind attack:

Attacker floods lsec.be servers

with queries that consume

all available CPU time,

or floods lsec.be network

with packets that consume

all available network capacity.

Attacker pokes the client to

trigger an lsec.be lookup.

Attacker immediately sends

a series of forged packets

to the DNS cache.



“Doesn’t the attacker have to

win a race against the

legitimate DNS packets

from the administrator at

lsec.be?”

— Yes, but many ways for

attackers to win race:

1. Deafen the legitimate server.

2. Mute the legitimate server.

3. Poke-jab-jab-jab-jab-jab.

4. Easy, succeeds instantly:

Sniff the network.

Typical combined blind attack:

Attacker floods lsec.be servers

with queries that consume

all available CPU time,

or floods lsec.be network

with packets that consume

all available network capacity.

Attacker pokes the client to

trigger an lsec.be lookup.

Attacker immediately sends

a series of forged packets

to the DNS cache.

“What if attacker loses race?”

— Many ways for attacker

to continue his attack:

1. He attacks another cache.

2. He attacks another name on

the same cache.

3. He attacks the same name on

the same cache, sideways.

With any of these approaches,

number of cached forgeries

increases linearly over time.



“Doesn’t the attacker have to

win a race against the

legitimate DNS packets

from the administrator at

lsec.be?”

— Yes, but many ways for

attackers to win race:

1. Deafen the legitimate server.

2. Mute the legitimate server.

3. Poke-jab-jab-jab-jab-jab.

4. Easy, succeeds instantly:

Sniff the network.

Typical combined blind attack:

Attacker floods lsec.be servers

with queries that consume

all available CPU time,

or floods lsec.be network

with packets that consume

all available network capacity.

Attacker pokes the client to

trigger an lsec.be lookup.

Attacker immediately sends

a series of forged packets

to the DNS cache.

“What if attacker loses race?”

— Many ways for attacker

to continue his attack:

1. He attacks another cache.

2. He attacks another name on

the same cache.

3. He attacks the same name on

the same cache, sideways.

With any of these approaches,

number of cached forgeries

increases linearly over time.



“Doesn’t the attacker have to

win a race against the

legitimate DNS packets

from the administrator at

lsec.be?”

— Yes, but many ways for

attackers to win race:

1. Deafen the legitimate server.

2. Mute the legitimate server.

3. Poke-jab-jab-jab-jab-jab.

4. Easy, succeeds instantly:

Sniff the network.

Typical combined blind attack:

Attacker floods lsec.be servers

with queries that consume

all available CPU time,

or floods lsec.be network

with packets that consume

all available network capacity.

Attacker pokes the client to

trigger an lsec.be lookup.

Attacker immediately sends

a series of forged packets

to the DNS cache.

“What if attacker loses race?”

— Many ways for attacker

to continue his attack:

1. He attacks another cache.

2. He attacks another name on

the same cache.

3. He attacks the same name on

the same cache, sideways.

With any of these approaches,

number of cached forgeries

increases linearly over time.



Typical combined blind attack:

Attacker floods lsec.be servers

with queries that consume

all available CPU time,

or floods lsec.be network

with packets that consume

all available network capacity.

Attacker pokes the client to

trigger an lsec.be lookup.

Attacker immediately sends

a series of forged packets

to the DNS cache.

“What if attacker loses race?”

— Many ways for attacker

to continue his attack:

1. He attacks another cache.

2. He attacks another name on

the same cache.

3. He attacks the same name on

the same cache, sideways.

With any of these approaches,

number of cached forgeries

increases linearly over time.



Typical combined blind attack:

Attacker floods lsec.be servers

with queries that consume

all available CPU time,

or floods lsec.be network

with packets that consume

all available network capacity.

Attacker pokes the client to

trigger an lsec.be lookup.

Attacker immediately sends

a series of forged packets

to the DNS cache.

“What if attacker loses race?”

— Many ways for attacker

to continue his attack:

1. He attacks another cache.

2. He attacks another name on

the same cache.

3. He attacks the same name on

the same cache, sideways.

With any of these approaches,

number of cached forgeries

increases linearly over time.

Sideways attacks were popularized

in 2008 by Dan Kaminsky.

Attacker pokes the client to

trigger a DNS lookup for

8675309.lsec.be.

Attacker forges response for

8675309.lsec.be

with extra information about

www.lsec.be.

For various performance reasons,

DNS caches are willing

to accept the extra information.



Typical combined blind attack:

Attacker floods lsec.be servers

with queries that consume

all available CPU time,

or floods lsec.be network

with packets that consume

all available network capacity.

Attacker pokes the client to

trigger an lsec.be lookup.

Attacker immediately sends

a series of forged packets

to the DNS cache.

“What if attacker loses race?”

— Many ways for attacker

to continue his attack:

1. He attacks another cache.

2. He attacks another name on

the same cache.

3. He attacks the same name on

the same cache, sideways.

With any of these approaches,

number of cached forgeries

increases linearly over time.

Sideways attacks were popularized

in 2008 by Dan Kaminsky.

Attacker pokes the client to

trigger a DNS lookup for

8675309.lsec.be.

Attacker forges response for

8675309.lsec.be

with extra information about

www.lsec.be.

For various performance reasons,

DNS caches are willing

to accept the extra information.



Typical combined blind attack:

Attacker floods lsec.be servers

with queries that consume

all available CPU time,

or floods lsec.be network

with packets that consume

all available network capacity.

Attacker pokes the client to

trigger an lsec.be lookup.

Attacker immediately sends

a series of forged packets

to the DNS cache.

“What if attacker loses race?”

— Many ways for attacker

to continue his attack:

1. He attacks another cache.

2. He attacks another name on

the same cache.

3. He attacks the same name on

the same cache, sideways.

With any of these approaches,

number of cached forgeries

increases linearly over time.

Sideways attacks were popularized

in 2008 by Dan Kaminsky.

Attacker pokes the client to

trigger a DNS lookup for

8675309.lsec.be.

Attacker forges response for

8675309.lsec.be

with extra information about

www.lsec.be.

For various performance reasons,

DNS caches are willing

to accept the extra information.



“What if attacker loses race?”

— Many ways for attacker

to continue his attack:

1. He attacks another cache.

2. He attacks another name on

the same cache.

3. He attacks the same name on

the same cache, sideways.

With any of these approaches,

number of cached forgeries

increases linearly over time.

Sideways attacks were popularized

in 2008 by Dan Kaminsky.

Attacker pokes the client to

trigger a DNS lookup for

8675309.lsec.be.

Attacker forges response for

8675309.lsec.be

with extra information about

www.lsec.be.

For various performance reasons,

DNS caches are willing

to accept the extra information.



“What if attacker loses race?”

— Many ways for attacker

to continue his attack:

1. He attacks another cache.

2. He attacks another name on

the same cache.

3. He attacks the same name on

the same cache, sideways.

With any of these approaches,

number of cached forgeries

increases linearly over time.

Sideways attacks were popularized

in 2008 by Dan Kaminsky.

Attacker pokes the client to

trigger a DNS lookup for

8675309.lsec.be.

Attacker forges response for

8675309.lsec.be

with extra information about

www.lsec.be.

For various performance reasons,

DNS caches are willing

to accept the extra information.

Interlude: types of security

Confidentiality: The attacker

cannot see this information.

Integrity: The attacker cannot

silently modify this information.

User doesn’t see wrong data.

Availability: The attacker

cannot modify this information.

User sees the right data.



“What if attacker loses race?”

— Many ways for attacker

to continue his attack:

1. He attacks another cache.

2. He attacks another name on

the same cache.

3. He attacks the same name on

the same cache, sideways.

With any of these approaches,

number of cached forgeries

increases linearly over time.

Sideways attacks were popularized

in 2008 by Dan Kaminsky.

Attacker pokes the client to

trigger a DNS lookup for

8675309.lsec.be.

Attacker forges response for

8675309.lsec.be

with extra information about

www.lsec.be.

For various performance reasons,

DNS caches are willing

to accept the extra information.

Interlude: types of security

Confidentiality: The attacker

cannot see this information.

Integrity: The attacker cannot

silently modify this information.

User doesn’t see wrong data.

Availability: The attacker

cannot modify this information.

User sees the right data.



“What if attacker loses race?”

— Many ways for attacker

to continue his attack:

1. He attacks another cache.

2. He attacks another name on

the same cache.

3. He attacks the same name on

the same cache, sideways.

With any of these approaches,

number of cached forgeries

increases linearly over time.

Sideways attacks were popularized

in 2008 by Dan Kaminsky.

Attacker pokes the client to

trigger a DNS lookup for

8675309.lsec.be.

Attacker forges response for

8675309.lsec.be

with extra information about

www.lsec.be.

For various performance reasons,

DNS caches are willing

to accept the extra information.

Interlude: types of security

Confidentiality: The attacker

cannot see this information.

Integrity: The attacker cannot

silently modify this information.

User doesn’t see wrong data.

Availability: The attacker

cannot modify this information.

User sees the right data.



Sideways attacks were popularized

in 2008 by Dan Kaminsky.

Attacker pokes the client to

trigger a DNS lookup for

8675309.lsec.be.

Attacker forges response for

8675309.lsec.be

with extra information about

www.lsec.be.

For various performance reasons,

DNS caches are willing

to accept the extra information.

Interlude: types of security

Confidentiality: The attacker

cannot see this information.

Integrity: The attacker cannot

silently modify this information.

User doesn’t see wrong data.

Availability: The attacker

cannot modify this information.

User sees the right data.



Sideways attacks were popularized

in 2008 by Dan Kaminsky.

Attacker pokes the client to

trigger a DNS lookup for

8675309.lsec.be.

Attacker forges response for

8675309.lsec.be

with extra information about

www.lsec.be.

For various performance reasons,

DNS caches are willing

to accept the extra information.

Interlude: types of security

Confidentiality: The attacker

cannot see this information.

Integrity: The attacker cannot

silently modify this information.

User doesn’t see wrong data.

Availability: The attacker

cannot modify this information.

User sees the right data.

Attacker flooding a network

is compromising availability.

(“Denial of service.”)

Attacker successfully forging

DNS packets of lsec.be

is compromising integrity.

Attacker stealing email

is compromising confidentiality:

attacker sees the email.

Also compromising availability:

user doesn’t see the email.



Sideways attacks were popularized

in 2008 by Dan Kaminsky.

Attacker pokes the client to

trigger a DNS lookup for

8675309.lsec.be.

Attacker forges response for

8675309.lsec.be

with extra information about

www.lsec.be.

For various performance reasons,

DNS caches are willing

to accept the extra information.

Interlude: types of security

Confidentiality: The attacker

cannot see this information.

Integrity: The attacker cannot

silently modify this information.

User doesn’t see wrong data.

Availability: The attacker

cannot modify this information.

User sees the right data.

Attacker flooding a network

is compromising availability.

(“Denial of service.”)

Attacker successfully forging

DNS packets of lsec.be

is compromising integrity.

Attacker stealing email

is compromising confidentiality:

attacker sees the email.

Also compromising availability:

user doesn’t see the email.



Sideways attacks were popularized

in 2008 by Dan Kaminsky.

Attacker pokes the client to

trigger a DNS lookup for

8675309.lsec.be.

Attacker forges response for

8675309.lsec.be

with extra information about

www.lsec.be.

For various performance reasons,

DNS caches are willing

to accept the extra information.

Interlude: types of security

Confidentiality: The attacker

cannot see this information.

Integrity: The attacker cannot

silently modify this information.

User doesn’t see wrong data.

Availability: The attacker

cannot modify this information.

User sees the right data.

Attacker flooding a network

is compromising availability.

(“Denial of service.”)

Attacker successfully forging

DNS packets of lsec.be

is compromising integrity.

Attacker stealing email

is compromising confidentiality:

attacker sees the email.

Also compromising availability:

user doesn’t see the email.



Interlude: types of security

Confidentiality: The attacker

cannot see this information.

Integrity: The attacker cannot

silently modify this information.

User doesn’t see wrong data.

Availability: The attacker

cannot modify this information.

User sees the right data.

Attacker flooding a network

is compromising availability.

(“Denial of service.”)

Attacker successfully forging

DNS packets of lsec.be

is compromising integrity.

Attacker stealing email

is compromising confidentiality:

attacker sees the email.

Also compromising availability:

user doesn’t see the email.



Interlude: types of security

Confidentiality: The attacker

cannot see this information.

Integrity: The attacker cannot

silently modify this information.

User doesn’t see wrong data.

Availability: The attacker

cannot modify this information.

User sees the right data.

Attacker flooding a network

is compromising availability.

(“Denial of service.”)

Attacker successfully forging

DNS packets of lsec.be

is compromising integrity.

Attacker stealing email

is compromising confidentiality:

attacker sees the email.

Also compromising availability:

user doesn’t see the email.

Lack of availability often

helps compromise integrity:

e.g., flooding a server

can assist in DNS forgeries.

Lack of confidentiality often

helps compromise integrity:

e.g., sniffing DNS queries

makes forgeries trivial.

Lack of integrity often

helps compromise confidentiality:

e.g., forging DNS packets

allows redirecting mail.

etc.



Interlude: types of security

Confidentiality: The attacker

cannot see this information.

Integrity: The attacker cannot

silently modify this information.

User doesn’t see wrong data.

Availability: The attacker

cannot modify this information.

User sees the right data.

Attacker flooding a network

is compromising availability.

(“Denial of service.”)

Attacker successfully forging

DNS packets of lsec.be

is compromising integrity.

Attacker stealing email

is compromising confidentiality:

attacker sees the email.

Also compromising availability:

user doesn’t see the email.

Lack of availability often

helps compromise integrity:

e.g., flooding a server

can assist in DNS forgeries.

Lack of confidentiality often

helps compromise integrity:

e.g., sniffing DNS queries

makes forgeries trivial.

Lack of integrity often

helps compromise confidentiality:

e.g., forging DNS packets

allows redirecting mail.

etc.



Interlude: types of security

Confidentiality: The attacker

cannot see this information.

Integrity: The attacker cannot

silently modify this information.

User doesn’t see wrong data.

Availability: The attacker

cannot modify this information.

User sees the right data.

Attacker flooding a network

is compromising availability.

(“Denial of service.”)

Attacker successfully forging

DNS packets of lsec.be

is compromising integrity.

Attacker stealing email

is compromising confidentiality:

attacker sees the email.

Also compromising availability:

user doesn’t see the email.

Lack of availability often

helps compromise integrity:

e.g., flooding a server

can assist in DNS forgeries.

Lack of confidentiality often

helps compromise integrity:

e.g., sniffing DNS queries

makes forgeries trivial.

Lack of integrity often

helps compromise confidentiality:

e.g., forging DNS packets

allows redirecting mail.

etc.



Attacker flooding a network

is compromising availability.

(“Denial of service.”)

Attacker successfully forging

DNS packets of lsec.be

is compromising integrity.

Attacker stealing email

is compromising confidentiality:

attacker sees the email.

Also compromising availability:

user doesn’t see the email.

Lack of availability often

helps compromise integrity:

e.g., flooding a server

can assist in DNS forgeries.

Lack of confidentiality often

helps compromise integrity:

e.g., sniffing DNS queries

makes forgeries trivial.

Lack of integrity often

helps compromise confidentiality:

e.g., forging DNS packets

allows redirecting mail.

etc.



Attacker flooding a network

is compromising availability.

(“Denial of service.”)

Attacker successfully forging

DNS packets of lsec.be

is compromising integrity.

Attacker stealing email

is compromising confidentiality:

attacker sees the email.

Also compromising availability:

user doesn’t see the email.

Lack of availability often

helps compromise integrity:

e.g., flooding a server

can assist in DNS forgeries.

Lack of confidentiality often

helps compromise integrity:

e.g., sniffing DNS queries

makes forgeries trivial.

Lack of integrity often

helps compromise confidentiality:

e.g., forging DNS packets

allows redirecting mail.

etc.

PGP-encrypting your email

can provide confidentiality.

Attacker who steals email

still won’t understand it.

Also integrity.

Attacker can’t modify email.

But it won’t provide availability.

The email silently disappeared!

Retroactively checking integrity

doesn’t restore availability.



Attacker flooding a network

is compromising availability.

(“Denial of service.”)

Attacker successfully forging

DNS packets of lsec.be

is compromising integrity.

Attacker stealing email

is compromising confidentiality:

attacker sees the email.

Also compromising availability:

user doesn’t see the email.

Lack of availability often

helps compromise integrity:

e.g., flooding a server

can assist in DNS forgeries.

Lack of confidentiality often

helps compromise integrity:

e.g., sniffing DNS queries

makes forgeries trivial.

Lack of integrity often

helps compromise confidentiality:

e.g., forging DNS packets

allows redirecting mail.

etc.

PGP-encrypting your email

can provide confidentiality.

Attacker who steals email

still won’t understand it.

Also integrity.

Attacker can’t modify email.

But it won’t provide availability.

The email silently disappeared!

Retroactively checking integrity

doesn’t restore availability.



Attacker flooding a network

is compromising availability.

(“Denial of service.”)

Attacker successfully forging

DNS packets of lsec.be

is compromising integrity.

Attacker stealing email

is compromising confidentiality:

attacker sees the email.

Also compromising availability:

user doesn’t see the email.

Lack of availability often

helps compromise integrity:

e.g., flooding a server

can assist in DNS forgeries.

Lack of confidentiality often

helps compromise integrity:

e.g., sniffing DNS queries

makes forgeries trivial.

Lack of integrity often

helps compromise confidentiality:

e.g., forging DNS packets

allows redirecting mail.

etc.

PGP-encrypting your email

can provide confidentiality.

Attacker who steals email

still won’t understand it.

Also integrity.

Attacker can’t modify email.

But it won’t provide availability.

The email silently disappeared!

Retroactively checking integrity

doesn’t restore availability.



Lack of availability often

helps compromise integrity:

e.g., flooding a server

can assist in DNS forgeries.

Lack of confidentiality often

helps compromise integrity:

e.g., sniffing DNS queries

makes forgeries trivial.

Lack of integrity often

helps compromise confidentiality:

e.g., forging DNS packets

allows redirecting mail.

etc.

PGP-encrypting your email

can provide confidentiality.

Attacker who steals email

still won’t understand it.

Also integrity.

Attacker can’t modify email.

But it won’t provide availability.

The email silently disappeared!

Retroactively checking integrity

doesn’t restore availability.



Lack of availability often

helps compromise integrity:

e.g., flooding a server

can assist in DNS forgeries.

Lack of confidentiality often

helps compromise integrity:

e.g., sniffing DNS queries

makes forgeries trivial.

Lack of integrity often

helps compromise confidentiality:

e.g., forging DNS packets

allows redirecting mail.

etc.

PGP-encrypting your email

can provide confidentiality.

Attacker who steals email

still won’t understand it.

Also integrity.

Attacker can’t modify email.

But it won’t provide availability.

The email silently disappeared!

Retroactively checking integrity

doesn’t restore availability.

What about cookies?

Cache’s DNS query packet

contains a 16-bit ID.

RFC 1035 (1987): “This identifier

is copied [to the] reply and can be

used by the requester to match up

replies to outstanding queries.”

Traditional ID sequence:

1, 2, 3, 4, 5, etc.

Cache discards any reply

that has the wrong ID.

“How does the attacker

guess the right ID?”



Lack of availability often

helps compromise integrity:

e.g., flooding a server

can assist in DNS forgeries.

Lack of confidentiality often

helps compromise integrity:

e.g., sniffing DNS queries

makes forgeries trivial.

Lack of integrity often

helps compromise confidentiality:

e.g., forging DNS packets

allows redirecting mail.

etc.

PGP-encrypting your email

can provide confidentiality.

Attacker who steals email

still won’t understand it.

Also integrity.

Attacker can’t modify email.

But it won’t provide availability.

The email silently disappeared!

Retroactively checking integrity

doesn’t restore availability.

What about cookies?

Cache’s DNS query packet

contains a 16-bit ID.

RFC 1035 (1987): “This identifier

is copied [to the] reply and can be

used by the requester to match up

replies to outstanding queries.”

Traditional ID sequence:

1, 2, 3, 4, 5, etc.

Cache discards any reply

that has the wrong ID.

“How does the attacker

guess the right ID?”



Lack of availability often

helps compromise integrity:

e.g., flooding a server

can assist in DNS forgeries.

Lack of confidentiality often

helps compromise integrity:

e.g., sniffing DNS queries

makes forgeries trivial.

Lack of integrity often

helps compromise confidentiality:

e.g., forging DNS packets

allows redirecting mail.

etc.

PGP-encrypting your email

can provide confidentiality.

Attacker who steals email

still won’t understand it.

Also integrity.

Attacker can’t modify email.

But it won’t provide availability.

The email silently disappeared!

Retroactively checking integrity

doesn’t restore availability.

What about cookies?

Cache’s DNS query packet

contains a 16-bit ID.

RFC 1035 (1987): “This identifier

is copied [to the] reply and can be

used by the requester to match up

replies to outstanding queries.”

Traditional ID sequence:

1, 2, 3, 4, 5, etc.

Cache discards any reply

that has the wrong ID.

“How does the attacker

guess the right ID?”



PGP-encrypting your email

can provide confidentiality.

Attacker who steals email

still won’t understand it.

Also integrity.

Attacker can’t modify email.

But it won’t provide availability.

The email silently disappeared!

Retroactively checking integrity

doesn’t restore availability.

What about cookies?

Cache’s DNS query packet

contains a 16-bit ID.

RFC 1035 (1987): “This identifier

is copied [to the] reply and can be

used by the requester to match up

replies to outstanding queries.”

Traditional ID sequence:

1, 2, 3, 4, 5, etc.

Cache discards any reply

that has the wrong ID.

“How does the attacker

guess the right ID?”



PGP-encrypting your email

can provide confidentiality.

Attacker who steals email

still won’t understand it.

Also integrity.

Attacker can’t modify email.

But it won’t provide availability.

The email silently disappeared!

Retroactively checking integrity

doesn’t restore availability.

What about cookies?

Cache’s DNS query packet

contains a 16-bit ID.

RFC 1035 (1987): “This identifier

is copied [to the] reply and can be

used by the requester to match up

replies to outstanding queries.”

Traditional ID sequence:

1, 2, 3, 4, 5, etc.

Cache discards any reply

that has the wrong ID.

“How does the attacker

guess the right ID?”

Attacker sets up a web page

supersecuritytools.to,

including an inline image

from www.lsec.be.

Attacker provides DNS data for

supersecuritytools.to

from his own DNS servers.

Victim asks browser to view

supersecuritytools.to.

Attacker sees cache’s ID for

supersecuritytools.to

DNS query. Attacker then

predicts ID for lsec.be query.



PGP-encrypting your email

can provide confidentiality.

Attacker who steals email

still won’t understand it.

Also integrity.

Attacker can’t modify email.

But it won’t provide availability.

The email silently disappeared!

Retroactively checking integrity

doesn’t restore availability.

What about cookies?

Cache’s DNS query packet

contains a 16-bit ID.

RFC 1035 (1987): “This identifier

is copied [to the] reply and can be

used by the requester to match up

replies to outstanding queries.”

Traditional ID sequence:

1, 2, 3, 4, 5, etc.

Cache discards any reply

that has the wrong ID.

“How does the attacker

guess the right ID?”

Attacker sets up a web page

supersecuritytools.to,

including an inline image

from www.lsec.be.

Attacker provides DNS data for

supersecuritytools.to

from his own DNS servers.

Victim asks browser to view

supersecuritytools.to.

Attacker sees cache’s ID for

supersecuritytools.to

DNS query. Attacker then

predicts ID for lsec.be query.



PGP-encrypting your email

can provide confidentiality.

Attacker who steals email

still won’t understand it.

Also integrity.

Attacker can’t modify email.

But it won’t provide availability.

The email silently disappeared!

Retroactively checking integrity

doesn’t restore availability.

What about cookies?

Cache’s DNS query packet

contains a 16-bit ID.

RFC 1035 (1987): “This identifier

is copied [to the] reply and can be

used by the requester to match up

replies to outstanding queries.”

Traditional ID sequence:

1, 2, 3, 4, 5, etc.

Cache discards any reply

that has the wrong ID.

“How does the attacker

guess the right ID?”

Attacker sets up a web page

supersecuritytools.to,

including an inline image

from www.lsec.be.

Attacker provides DNS data for

supersecuritytools.to

from his own DNS servers.

Victim asks browser to view

supersecuritytools.to.

Attacker sees cache’s ID for

supersecuritytools.to

DNS query. Attacker then

predicts ID for lsec.be query.



What about cookies?

Cache’s DNS query packet

contains a 16-bit ID.

RFC 1035 (1987): “This identifier

is copied [to the] reply and can be

used by the requester to match up

replies to outstanding queries.”

Traditional ID sequence:

1, 2, 3, 4, 5, etc.

Cache discards any reply

that has the wrong ID.

“How does the attacker

guess the right ID?”

Attacker sets up a web page

supersecuritytools.to,

including an inline image

from www.lsec.be.

Attacker provides DNS data for

supersecuritytools.to

from his own DNS servers.

Victim asks browser to view

supersecuritytools.to.

Attacker sees cache’s ID for

supersecuritytools.to

DNS query. Attacker then

predicts ID for lsec.be query.



What about cookies?

Cache’s DNS query packet

contains a 16-bit ID.

RFC 1035 (1987): “This identifier

is copied [to the] reply and can be

used by the requester to match up

replies to outstanding queries.”

Traditional ID sequence:

1, 2, 3, 4, 5, etc.

Cache discards any reply

that has the wrong ID.

“How does the attacker

guess the right ID?”

Attacker sets up a web page

supersecuritytools.to,

including an inline image

from www.lsec.be.

Attacker provides DNS data for

supersecuritytools.to

from his own DNS servers.

Victim asks browser to view

supersecuritytools.to.

Attacker sees cache’s ID for

supersecuritytools.to

DNS query. Attacker then

predicts ID for lsec.be query.

Cache
“ID 47603: SST.to?”//

Attacker
“ID 47603: SST.to 157.22.245.20

(and please don’t cache this)”

oo

Browser

“http://SST.to”//
Attacker

“... lsec.be ...”
oo

Cache Attacker
“ID 47604: lsec.be 157.22.245.20”

oo

Cache Attacker
“ID 47604: lsec.be 157.22.245.20”

oo

Cache Attacker
“ID 47604: lsec.be 157.22.245.20”

oo

Cache Attacker
“ID 47604: lsec.be 157.22.245.20”

oo

Cache Attacker
“ID 47604: lsec.be 157.22.245.20”

oo



What about cookies?

Cache’s DNS query packet

contains a 16-bit ID.

RFC 1035 (1987): “This identifier

is copied [to the] reply and can be

used by the requester to match up

replies to outstanding queries.”

Traditional ID sequence:

1, 2, 3, 4, 5, etc.

Cache discards any reply

that has the wrong ID.

“How does the attacker

guess the right ID?”

Attacker sets up a web page

supersecuritytools.to,

including an inline image

from www.lsec.be.

Attacker provides DNS data for

supersecuritytools.to

from his own DNS servers.

Victim asks browser to view

supersecuritytools.to.

Attacker sees cache’s ID for

supersecuritytools.to

DNS query. Attacker then

predicts ID for lsec.be query.

Cache
“ID 47603: SST.to?”//

Attacker
“ID 47603: SST.to 157.22.245.20

(and please don’t cache this)”

oo

Browser

“http://SST.to”//
Attacker

“... lsec.be ...”
oo

Cache Attacker
“ID 47604: lsec.be 157.22.245.20”

oo

Cache Attacker
“ID 47604: lsec.be 157.22.245.20”

oo

Cache Attacker
“ID 47604: lsec.be 157.22.245.20”

oo

Cache Attacker
“ID 47604: lsec.be 157.22.245.20”

oo

Cache Attacker
“ID 47604: lsec.be 157.22.245.20”

oo



What about cookies?

Cache’s DNS query packet

contains a 16-bit ID.

RFC 1035 (1987): “This identifier

is copied [to the] reply and can be

used by the requester to match up

replies to outstanding queries.”

Traditional ID sequence:

1, 2, 3, 4, 5, etc.

Cache discards any reply

that has the wrong ID.

“How does the attacker

guess the right ID?”

Attacker sets up a web page

supersecuritytools.to,

including an inline image

from www.lsec.be.

Attacker provides DNS data for

supersecuritytools.to

from his own DNS servers.

Victim asks browser to view

supersecuritytools.to.

Attacker sees cache’s ID for

supersecuritytools.to

DNS query. Attacker then

predicts ID for lsec.be query.

Cache
“ID 47603: SST.to?”//

Attacker
“ID 47603: SST.to 157.22.245.20

(and please don’t cache this)”

oo

Browser

“http://SST.to”//
Attacker

“... lsec.be ...”
oo

Cache Attacker
“ID 47604: lsec.be 157.22.245.20”

oo

Cache Attacker
“ID 47604: lsec.be 157.22.245.20”

oo

Cache Attacker
“ID 47604: lsec.be 157.22.245.20”

oo

Cache Attacker
“ID 47604: lsec.be 157.22.245.20”

oo

Cache Attacker
“ID 47604: lsec.be 157.22.245.20”

oo



Attacker sets up a web page

supersecuritytools.to,

including an inline image

from www.lsec.be.

Attacker provides DNS data for

supersecuritytools.to

from his own DNS servers.

Victim asks browser to view

supersecuritytools.to.

Attacker sees cache’s ID for

supersecuritytools.to

DNS query. Attacker then

predicts ID for lsec.be query.

Cache
“ID 47603: SST.to?”//

Attacker
“ID 47603: SST.to 157.22.245.20

(and please don’t cache this)”

oo

Browser

“http://SST.to”//
Attacker

“... lsec.be ...”
oo

Cache Attacker
“ID 47604: lsec.be 157.22.245.20”

oo

Cache Attacker
“ID 47604: lsec.be 157.22.245.20”

oo

Cache Attacker
“ID 47604: lsec.be 157.22.245.20”

oo

Cache Attacker
“ID 47604: lsec.be 157.22.245.20”

oo

Cache Attacker
“ID 47604: lsec.be 157.22.245.20”

oo



Attacker sets up a web page

supersecuritytools.to,

including an inline image

from www.lsec.be.

Attacker provides DNS data for

supersecuritytools.to

from his own DNS servers.

Victim asks browser to view

supersecuritytools.to.

Attacker sees cache’s ID for

supersecuritytools.to

DNS query. Attacker then

predicts ID for lsec.be query.

Cache
“ID 47603: SST.to?”//

Attacker
“ID 47603: SST.to 157.22.245.20

(and please don’t cache this)”

oo

Browser

“http://SST.to”//
Attacker

“... lsec.be ...”
oo

Cache Attacker
“ID 47604: lsec.be 157.22.245.20”

oo

Cache Attacker
“ID 47604: lsec.be 157.22.245.20”

oo

Cache Attacker
“ID 47604: lsec.be 157.22.245.20”

oo

Cache Attacker
“ID 47604: lsec.be 157.22.245.20”

oo

Cache Attacker
“ID 47604: lsec.be 157.22.245.20”

oo

More recent idea:

“Hey, let’s use random IDs! Then

the attacker won’t be able to

forge a packet with the right ID!”

Can use any good stream cipher

to expand a short secret key

into a long sequence of

“random” numbers.

AES-CTR: � 10 cycles/byte.

Salsa20/12: � 3 cycles/byte.

Output is very hard to predict:

attacker has no idea what the

next ID will be, even after seeing

entire sequence of previous IDs.



Attacker sets up a web page

supersecuritytools.to,

including an inline image

from www.lsec.be.

Attacker provides DNS data for

supersecuritytools.to

from his own DNS servers.

Victim asks browser to view

supersecuritytools.to.

Attacker sees cache’s ID for

supersecuritytools.to

DNS query. Attacker then

predicts ID for lsec.be query.

Cache
“ID 47603: SST.to?”//

Attacker
“ID 47603: SST.to 157.22.245.20

(and please don’t cache this)”

oo

Browser

“http://SST.to”//
Attacker

“... lsec.be ...”
oo

Cache Attacker
“ID 47604: lsec.be 157.22.245.20”

oo

Cache Attacker
“ID 47604: lsec.be 157.22.245.20”

oo

Cache Attacker
“ID 47604: lsec.be 157.22.245.20”

oo

Cache Attacker
“ID 47604: lsec.be 157.22.245.20”

oo

Cache Attacker
“ID 47604: lsec.be 157.22.245.20”

oo

More recent idea:

“Hey, let’s use random IDs! Then

the attacker won’t be able to

forge a packet with the right ID!”

Can use any good stream cipher

to expand a short secret key

into a long sequence of

“random” numbers.

AES-CTR: � 10 cycles/byte.

Salsa20/12: � 3 cycles/byte.

Output is very hard to predict:

attacker has no idea what the

next ID will be, even after seeing

entire sequence of previous IDs.



Attacker sets up a web page

supersecuritytools.to,

including an inline image

from www.lsec.be.

Attacker provides DNS data for

supersecuritytools.to

from his own DNS servers.

Victim asks browser to view

supersecuritytools.to.

Attacker sees cache’s ID for

supersecuritytools.to

DNS query. Attacker then

predicts ID for lsec.be query.

Cache
“ID 47603: SST.to?”//

Attacker
“ID 47603: SST.to 157.22.245.20

(and please don’t cache this)”

oo

Browser

“http://SST.to”//
Attacker

“... lsec.be ...”
oo

Cache Attacker
“ID 47604: lsec.be 157.22.245.20”

oo

Cache Attacker
“ID 47604: lsec.be 157.22.245.20”

oo

Cache Attacker
“ID 47604: lsec.be 157.22.245.20”

oo

Cache Attacker
“ID 47604: lsec.be 157.22.245.20”

oo

Cache Attacker
“ID 47604: lsec.be 157.22.245.20”

oo

More recent idea:

“Hey, let’s use random IDs! Then

the attacker won’t be able to

forge a packet with the right ID!”

Can use any good stream cipher

to expand a short secret key

into a long sequence of

“random” numbers.

AES-CTR: � 10 cycles/byte.

Salsa20/12: � 3 cycles/byte.

Output is very hard to predict:

attacker has no idea what the

next ID will be, even after seeing

entire sequence of previous IDs.



Cache
“ID 47603: SST.to?”//

Attacker
“ID 47603: SST.to 157.22.245.20

(and please don’t cache this)”

oo

Browser

“http://SST.to”//
Attacker

“... lsec.be ...”
oo

Cache Attacker
“ID 47604: lsec.be 157.22.245.20”

oo

Cache Attacker
“ID 47604: lsec.be 157.22.245.20”

oo

Cache Attacker
“ID 47604: lsec.be 157.22.245.20”

oo

Cache Attacker
“ID 47604: lsec.be 157.22.245.20”

oo

Cache Attacker
“ID 47604: lsec.be 157.22.245.20”

oo

More recent idea:

“Hey, let’s use random IDs! Then

the attacker won’t be able to

forge a packet with the right ID!”

Can use any good stream cipher

to expand a short secret key

into a long sequence of

“random” numbers.

AES-CTR: � 10 cycles/byte.

Salsa20/12: � 3 cycles/byte.

Output is very hard to predict:

attacker has no idea what the

next ID will be, even after seeing

entire sequence of previous IDs.



Cache
“ID 47603: SST.to?”//

Attacker
“ID 47603: SST.to 157.22.245.20

(and please don’t cache this)”

oo

Browser

“http://SST.to”//
Attacker

“... lsec.be ...”
oo

Cache Attacker
“ID 47604: lsec.be 157.22.245.20”

oo

Cache Attacker
“ID 47604: lsec.be 157.22.245.20”

oo

Cache Attacker
“ID 47604: lsec.be 157.22.245.20”

oo

Cache Attacker
“ID 47604: lsec.be 157.22.245.20”

oo

Cache Attacker
“ID 47604: lsec.be 157.22.245.20”

oo

More recent idea:

“Hey, let’s use random IDs! Then

the attacker won’t be able to

forge a packet with the right ID!”

Can use any good stream cipher

to expand a short secret key

into a long sequence of

“random” numbers.

AES-CTR: � 10 cycles/byte.

Salsa20/12: � 3 cycles/byte.

Output is very hard to predict:

attacker has no idea what the

next ID will be, even after seeing

entire sequence of previous IDs.

Client can randomize

16-bit ID and

16-bit UDP source port.

Implemented and advertised

in djbdns since 1999,

and in PowerDNS since 2006.

Same feature added 2008.07

in “emergency” upgrade to BIND,

Microsoft DNS, Nominum CNS,

most Cisco products, etc.

New York Times headline:

“WITH SECURITY AT RISK,

A PUSH TO PATCH THE WEB”



Cache
“ID 47603: SST.to?”//

Attacker
“ID 47603: SST.to 157.22.245.20

(and please don’t cache this)”

oo

Browser

“http://SST.to”//
Attacker

“... lsec.be ...”
oo

Cache Attacker
“ID 47604: lsec.be 157.22.245.20”

oo

Cache Attacker
“ID 47604: lsec.be 157.22.245.20”

oo

Cache Attacker
“ID 47604: lsec.be 157.22.245.20”

oo

Cache Attacker
“ID 47604: lsec.be 157.22.245.20”

oo

Cache Attacker
“ID 47604: lsec.be 157.22.245.20”

oo

More recent idea:

“Hey, let’s use random IDs! Then

the attacker won’t be able to

forge a packet with the right ID!”

Can use any good stream cipher

to expand a short secret key

into a long sequence of

“random” numbers.

AES-CTR: � 10 cycles/byte.

Salsa20/12: � 3 cycles/byte.

Output is very hard to predict:

attacker has no idea what the

next ID will be, even after seeing

entire sequence of previous IDs.

Client can randomize

16-bit ID and

16-bit UDP source port.

Implemented and advertised

in djbdns since 1999,

and in PowerDNS since 2006.

Same feature added 2008.07

in “emergency” upgrade to BIND,

Microsoft DNS, Nominum CNS,

most Cisco products, etc.

New York Times headline:

“WITH SECURITY AT RISK,

A PUSH TO PATCH THE WEB”



Cache
“ID 47603: SST.to?”//

Attacker
“ID 47603: SST.to 157.22.245.20

(and please don’t cache this)”

oo

Browser

“http://SST.to”//
Attacker

“... lsec.be ...”
oo

Cache Attacker
“ID 47604: lsec.be 157.22.245.20”

oo

Cache Attacker
“ID 47604: lsec.be 157.22.245.20”

oo

Cache Attacker
“ID 47604: lsec.be 157.22.245.20”

oo

Cache Attacker
“ID 47604: lsec.be 157.22.245.20”

oo

Cache Attacker
“ID 47604: lsec.be 157.22.245.20”

oo

More recent idea:

“Hey, let’s use random IDs! Then

the attacker won’t be able to

forge a packet with the right ID!”

Can use any good stream cipher

to expand a short secret key

into a long sequence of

“random” numbers.

AES-CTR: � 10 cycles/byte.

Salsa20/12: � 3 cycles/byte.

Output is very hard to predict:

attacker has no idea what the

next ID will be, even after seeing

entire sequence of previous IDs.

Client can randomize

16-bit ID and

16-bit UDP source port.

Implemented and advertised

in djbdns since 1999,

and in PowerDNS since 2006.

Same feature added 2008.07

in “emergency” upgrade to BIND,

Microsoft DNS, Nominum CNS,

most Cisco products, etc.

New York Times headline:

“WITH SECURITY AT RISK,

A PUSH TO PATCH THE WEB”



More recent idea:

“Hey, let’s use random IDs! Then

the attacker won’t be able to

forge a packet with the right ID!”

Can use any good stream cipher

to expand a short secret key

into a long sequence of

“random” numbers.

AES-CTR: � 10 cycles/byte.

Salsa20/12: � 3 cycles/byte.

Output is very hard to predict:

attacker has no idea what the

next ID will be, even after seeing

entire sequence of previous IDs.

Client can randomize

16-bit ID and

16-bit UDP source port.

Implemented and advertised

in djbdns since 1999,

and in PowerDNS since 2006.

Same feature added 2008.07

in “emergency” upgrade to BIND,

Microsoft DNS, Nominum CNS,

most Cisco products, etc.

New York Times headline:

“WITH SECURITY AT RISK,

A PUSH TO PATCH THE WEB”



More recent idea:

“Hey, let’s use random IDs! Then

the attacker won’t be able to

forge a packet with the right ID!”

Can use any good stream cipher

to expand a short secret key

into a long sequence of

“random” numbers.

AES-CTR: � 10 cycles/byte.

Salsa20/12: � 3 cycles/byte.

Output is very hard to predict:

attacker has no idea what the

next ID will be, even after seeing

entire sequence of previous IDs.

Client can randomize

16-bit ID and

16-bit UDP source port.

Implemented and advertised

in djbdns since 1999,

and in PowerDNS since 2006.

Same feature added 2008.07

in “emergency” upgrade to BIND,

Microsoft DNS, Nominum CNS,

most Cisco products, etc.

New York Times headline:

“WITH SECURITY AT RISK,

A PUSH TO PATCH THE WEB”

Bad news: Ignorant developers

often whip up breakable ciphers.

See, e.g., Klein’s analysis

leading to 2007.07.24

“emergency” BIND 9 upgrade:

In essence, this is a weak version
(since the output is 16 bits, as
opposed to the traditional 1 bit)
of the well studied cryptosystem
known by many names: “bilateral
stop/go (LFSR) generator”,
“mutually clock controlled (LFSR)
generator” and “mutual (or
bilateral) step-1/step-2 (LFSR)
generator”. ...

The Perl script in Appendix C
takes around 10-15 milliseconds ...
to extract the internal state from
13-15 consecutive transaction IDs.



More recent idea:

“Hey, let’s use random IDs! Then

the attacker won’t be able to

forge a packet with the right ID!”

Can use any good stream cipher

to expand a short secret key

into a long sequence of

“random” numbers.

AES-CTR: � 10 cycles/byte.

Salsa20/12: � 3 cycles/byte.

Output is very hard to predict:

attacker has no idea what the

next ID will be, even after seeing

entire sequence of previous IDs.

Client can randomize

16-bit ID and

16-bit UDP source port.

Implemented and advertised

in djbdns since 1999,

and in PowerDNS since 2006.

Same feature added 2008.07

in “emergency” upgrade to BIND,

Microsoft DNS, Nominum CNS,

most Cisco products, etc.

New York Times headline:

“WITH SECURITY AT RISK,

A PUSH TO PATCH THE WEB”

Bad news: Ignorant developers

often whip up breakable ciphers.

See, e.g., Klein’s analysis

leading to 2007.07.24

“emergency” BIND 9 upgrade:

In essence, this is a weak version
(since the output is 16 bits, as
opposed to the traditional 1 bit)
of the well studied cryptosystem
known by many names: “bilateral
stop/go (LFSR) generator”,
“mutually clock controlled (LFSR)
generator” and “mutual (or
bilateral) step-1/step-2 (LFSR)
generator”. ...

The Perl script in Appendix C
takes around 10-15 milliseconds ...
to extract the internal state from
13-15 consecutive transaction IDs.



More recent idea:

“Hey, let’s use random IDs! Then

the attacker won’t be able to

forge a packet with the right ID!”

Can use any good stream cipher

to expand a short secret key

into a long sequence of

“random” numbers.

AES-CTR: � 10 cycles/byte.

Salsa20/12: � 3 cycles/byte.

Output is very hard to predict:

attacker has no idea what the

next ID will be, even after seeing

entire sequence of previous IDs.

Client can randomize

16-bit ID and

16-bit UDP source port.

Implemented and advertised

in djbdns since 1999,

and in PowerDNS since 2006.

Same feature added 2008.07

in “emergency” upgrade to BIND,

Microsoft DNS, Nominum CNS,

most Cisco products, etc.

New York Times headline:

“WITH SECURITY AT RISK,

A PUSH TO PATCH THE WEB”

Bad news: Ignorant developers

often whip up breakable ciphers.

See, e.g., Klein’s analysis

leading to 2007.07.24

“emergency” BIND 9 upgrade:

In essence, this is a weak version
(since the output is 16 bits, as
opposed to the traditional 1 bit)
of the well studied cryptosystem
known by many names: “bilateral
stop/go (LFSR) generator”,
“mutually clock controlled (LFSR)
generator” and “mutual (or
bilateral) step-1/step-2 (LFSR)
generator”. ...

The Perl script in Appendix C
takes around 10-15 milliseconds ...
to extract the internal state from
13-15 consecutive transaction IDs.



Client can randomize

16-bit ID and

16-bit UDP source port.

Implemented and advertised

in djbdns since 1999,

and in PowerDNS since 2006.

Same feature added 2008.07

in “emergency” upgrade to BIND,

Microsoft DNS, Nominum CNS,

most Cisco products, etc.

New York Times headline:

“WITH SECURITY AT RISK,

A PUSH TO PATCH THE WEB”

Bad news: Ignorant developers

often whip up breakable ciphers.

See, e.g., Klein’s analysis

leading to 2007.07.24

“emergency” BIND 9 upgrade:

In essence, this is a weak version
(since the output is 16 bits, as
opposed to the traditional 1 bit)
of the well studied cryptosystem
known by many names: “bilateral
stop/go (LFSR) generator”,
“mutually clock controlled (LFSR)
generator” and “mutual (or
bilateral) step-1/step-2 (LFSR)
generator”. ...

The Perl script in Appendix C
takes around 10-15 milliseconds ...
to extract the internal state from
13-15 consecutive transaction IDs.



Client can randomize

16-bit ID and

16-bit UDP source port.

Implemented and advertised

in djbdns since 1999,

and in PowerDNS since 2006.

Same feature added 2008.07

in “emergency” upgrade to BIND,

Microsoft DNS, Nominum CNS,

most Cisco products, etc.

New York Times headline:

“WITH SECURITY AT RISK,

A PUSH TO PATCH THE WEB”

Bad news: Ignorant developers

often whip up breakable ciphers.

See, e.g., Klein’s analysis

leading to 2007.07.24

“emergency” BIND 9 upgrade:

In essence, this is a weak version
(since the output is 16 bits, as
opposed to the traditional 1 bit)
of the well studied cryptosystem
known by many names: “bilateral
stop/go (LFSR) generator”,
“mutually clock controlled (LFSR)
generator” and “mutual (or
bilateral) step-1/step-2 (LFSR)
generator”. ...

The Perl script in Appendix C
takes around 10-15 milliseconds ...
to extract the internal state from
13-15 consecutive transaction IDs.

Also Klein’s 2008.02.06

analysis of IDs in OpenBSD,

NetBSD, FreeBSD, MacOS X:

OpenBSD ported BIND 9 into
their code tree, but rolled
their own PRNG for the DNS
transaction ID field). ... “We
decided ... to use a more
proven algorithm (LCG, Linear
Congruential Generator) instead.
Thanks to this wise decision, the
BIND 9 shipped with OpenBSD
does not have this weakness. The
proactive security of OpenBSD
strikes again.” ... I discovered a
serious weakness in OpenBSD’s
PRNG, which allows an attacker
to predict the next transaction ID.

Also Klein’s 2007 and 2008

analyses of Microsoft IDs.



Client can randomize

16-bit ID and

16-bit UDP source port.

Implemented and advertised

in djbdns since 1999,

and in PowerDNS since 2006.

Same feature added 2008.07

in “emergency” upgrade to BIND,

Microsoft DNS, Nominum CNS,

most Cisco products, etc.

New York Times headline:

“WITH SECURITY AT RISK,

A PUSH TO PATCH THE WEB”

Bad news: Ignorant developers

often whip up breakable ciphers.

See, e.g., Klein’s analysis

leading to 2007.07.24

“emergency” BIND 9 upgrade:

In essence, this is a weak version
(since the output is 16 bits, as
opposed to the traditional 1 bit)
of the well studied cryptosystem
known by many names: “bilateral
stop/go (LFSR) generator”,
“mutually clock controlled (LFSR)
generator” and “mutual (or
bilateral) step-1/step-2 (LFSR)
generator”. ...

The Perl script in Appendix C
takes around 10-15 milliseconds ...
to extract the internal state from
13-15 consecutive transaction IDs.

Also Klein’s 2008.02.06

analysis of IDs in OpenBSD,

NetBSD, FreeBSD, MacOS X:

OpenBSD ported BIND 9 into
their code tree, but rolled
their own PRNG for the DNS
transaction ID field). ... “We
decided ... to use a more
proven algorithm (LCG, Linear
Congruential Generator) instead.
Thanks to this wise decision, the
BIND 9 shipped with OpenBSD
does not have this weakness. The
proactive security of OpenBSD
strikes again.” ... I discovered a
serious weakness in OpenBSD’s
PRNG, which allows an attacker
to predict the next transaction ID.

Also Klein’s 2007 and 2008

analyses of Microsoft IDs.



Client can randomize

16-bit ID and

16-bit UDP source port.

Implemented and advertised

in djbdns since 1999,

and in PowerDNS since 2006.

Same feature added 2008.07

in “emergency” upgrade to BIND,

Microsoft DNS, Nominum CNS,

most Cisco products, etc.

New York Times headline:

“WITH SECURITY AT RISK,

A PUSH TO PATCH THE WEB”

Bad news: Ignorant developers

often whip up breakable ciphers.

See, e.g., Klein’s analysis

leading to 2007.07.24

“emergency” BIND 9 upgrade:

In essence, this is a weak version
(since the output is 16 bits, as
opposed to the traditional 1 bit)
of the well studied cryptosystem
known by many names: “bilateral
stop/go (LFSR) generator”,
“mutually clock controlled (LFSR)
generator” and “mutual (or
bilateral) step-1/step-2 (LFSR)
generator”. ...

The Perl script in Appendix C
takes around 10-15 milliseconds ...
to extract the internal state from
13-15 consecutive transaction IDs.

Also Klein’s 2008.02.06

analysis of IDs in OpenBSD,

NetBSD, FreeBSD, MacOS X:

OpenBSD ported BIND 9 into
their code tree, but rolled
their own PRNG for the DNS
transaction ID field). ... “We
decided ... to use a more
proven algorithm (LCG, Linear
Congruential Generator) instead.
Thanks to this wise decision, the
BIND 9 shipped with OpenBSD
does not have this weakness. The
proactive security of OpenBSD
strikes again.” ... I discovered a
serious weakness in OpenBSD’s
PRNG, which allows an attacker
to predict the next transaction ID.

Also Klein’s 2007 and 2008

analyses of Microsoft IDs.



Bad news: Ignorant developers

often whip up breakable ciphers.

See, e.g., Klein’s analysis

leading to 2007.07.24

“emergency” BIND 9 upgrade:

In essence, this is a weak version
(since the output is 16 bits, as
opposed to the traditional 1 bit)
of the well studied cryptosystem
known by many names: “bilateral
stop/go (LFSR) generator”,
“mutually clock controlled (LFSR)
generator” and “mutual (or
bilateral) step-1/step-2 (LFSR)
generator”. ...

The Perl script in Appendix C
takes around 10-15 milliseconds ...
to extract the internal state from
13-15 consecutive transaction IDs.

Also Klein’s 2008.02.06

analysis of IDs in OpenBSD,

NetBSD, FreeBSD, MacOS X:

OpenBSD ported BIND 9 into
their code tree, but rolled
their own PRNG for the DNS
transaction ID field). ... “We
decided ... to use a more
proven algorithm (LCG, Linear
Congruential Generator) instead.
Thanks to this wise decision, the
BIND 9 shipped with OpenBSD
does not have this weakness. The
proactive security of OpenBSD
strikes again.” ... I discovered a
serious weakness in OpenBSD’s
PRNG, which allows an attacker
to predict the next transaction ID.

Also Klein’s 2007 and 2008

analyses of Microsoft IDs.



Bad news: Ignorant developers

often whip up breakable ciphers.

See, e.g., Klein’s analysis

leading to 2007.07.24

“emergency” BIND 9 upgrade:

In essence, this is a weak version
(since the output is 16 bits, as
opposed to the traditional 1 bit)
of the well studied cryptosystem
known by many names: “bilateral
stop/go (LFSR) generator”,
“mutually clock controlled (LFSR)
generator” and “mutual (or
bilateral) step-1/step-2 (LFSR)
generator”. ...

The Perl script in Appendix C
takes around 10-15 milliseconds ...
to extract the internal state from
13-15 consecutive transaction IDs.

Also Klein’s 2008.02.06

analysis of IDs in OpenBSD,

NetBSD, FreeBSD, MacOS X:

OpenBSD ported BIND 9 into
their code tree, but rolled
their own PRNG for the DNS
transaction ID field). ... “We
decided ... to use a more
proven algorithm (LCG, Linear
Congruential Generator) instead.
Thanks to this wise decision, the
BIND 9 shipped with OpenBSD
does not have this weakness. The
proactive security of OpenBSD
strikes again.” ... I discovered a
serious weakness in OpenBSD’s
PRNG, which allows an attacker
to predict the next transaction ID.

Also Klein’s 2007 and 2008

analyses of Microsoft IDs.

Bad news, continued:

Many ways for attackers

to beat ID+port randomization,

even if it’s cryptographic.

1. Attack repeatedly.

“An attacker who makes a few

billion random guesses is likely

to succeed at least once; tens of

millions of guesses are adequate

with a colliding attack;” etc.

2. Allocate most UDP ports

to other tasks, non-reusably.



Bad news: Ignorant developers

often whip up breakable ciphers.

See, e.g., Klein’s analysis

leading to 2007.07.24

“emergency” BIND 9 upgrade:

In essence, this is a weak version
(since the output is 16 bits, as
opposed to the traditional 1 bit)
of the well studied cryptosystem
known by many names: “bilateral
stop/go (LFSR) generator”,
“mutually clock controlled (LFSR)
generator” and “mutual (or
bilateral) step-1/step-2 (LFSR)
generator”. ...

The Perl script in Appendix C
takes around 10-15 milliseconds ...
to extract the internal state from
13-15 consecutive transaction IDs.

Also Klein’s 2008.02.06

analysis of IDs in OpenBSD,

NetBSD, FreeBSD, MacOS X:

OpenBSD ported BIND 9 into
their code tree, but rolled
their own PRNG for the DNS
transaction ID field). ... “We
decided ... to use a more
proven algorithm (LCG, Linear
Congruential Generator) instead.
Thanks to this wise decision, the
BIND 9 shipped with OpenBSD
does not have this weakness. The
proactive security of OpenBSD
strikes again.” ... I discovered a
serious weakness in OpenBSD’s
PRNG, which allows an attacker
to predict the next transaction ID.

Also Klein’s 2007 and 2008

analyses of Microsoft IDs.

Bad news, continued:

Many ways for attackers

to beat ID+port randomization,

even if it’s cryptographic.

1. Attack repeatedly.

“An attacker who makes a few

billion random guesses is likely

to succeed at least once; tens of

millions of guesses are adequate

with a colliding attack;” etc.

2. Allocate most UDP ports

to other tasks, non-reusably.



Bad news: Ignorant developers

often whip up breakable ciphers.

See, e.g., Klein’s analysis

leading to 2007.07.24

“emergency” BIND 9 upgrade:

In essence, this is a weak version
(since the output is 16 bits, as
opposed to the traditional 1 bit)
of the well studied cryptosystem
known by many names: “bilateral
stop/go (LFSR) generator”,
“mutually clock controlled (LFSR)
generator” and “mutual (or
bilateral) step-1/step-2 (LFSR)
generator”. ...

The Perl script in Appendix C
takes around 10-15 milliseconds ...
to extract the internal state from
13-15 consecutive transaction IDs.

Also Klein’s 2008.02.06

analysis of IDs in OpenBSD,

NetBSD, FreeBSD, MacOS X:

OpenBSD ported BIND 9 into
their code tree, but rolled
their own PRNG for the DNS
transaction ID field). ... “We
decided ... to use a more
proven algorithm (LCG, Linear
Congruential Generator) instead.
Thanks to this wise decision, the
BIND 9 shipped with OpenBSD
does not have this weakness. The
proactive security of OpenBSD
strikes again.” ... I discovered a
serious weakness in OpenBSD’s
PRNG, which allows an attacker
to predict the next transaction ID.

Also Klein’s 2007 and 2008

analyses of Microsoft IDs.

Bad news, continued:

Many ways for attackers

to beat ID+port randomization,

even if it’s cryptographic.

1. Attack repeatedly.

“An attacker who makes a few

billion random guesses is likely

to succeed at least once; tens of

millions of guesses are adequate

with a colliding attack;” etc.

2. Allocate most UDP ports

to other tasks, non-reusably.



Also Klein’s 2008.02.06

analysis of IDs in OpenBSD,

NetBSD, FreeBSD, MacOS X:

OpenBSD ported BIND 9 into
their code tree, but rolled
their own PRNG for the DNS
transaction ID field). ... “We
decided ... to use a more
proven algorithm (LCG, Linear
Congruential Generator) instead.
Thanks to this wise decision, the
BIND 9 shipped with OpenBSD
does not have this weakness. The
proactive security of OpenBSD
strikes again.” ... I discovered a
serious weakness in OpenBSD’s
PRNG, which allows an attacker
to predict the next transaction ID.

Also Klein’s 2007 and 2008

analyses of Microsoft IDs.

Bad news, continued:

Many ways for attackers

to beat ID+port randomization,

even if it’s cryptographic.

1. Attack repeatedly.

“An attacker who makes a few

billion random guesses is likely

to succeed at least once; tens of

millions of guesses are adequate

with a colliding attack;” etc.

2. Allocate most UDP ports

to other tasks, non-reusably.



Also Klein’s 2008.02.06

analysis of IDs in OpenBSD,

NetBSD, FreeBSD, MacOS X:

OpenBSD ported BIND 9 into
their code tree, but rolled
their own PRNG for the DNS
transaction ID field). ... “We
decided ... to use a more
proven algorithm (LCG, Linear
Congruential Generator) instead.
Thanks to this wise decision, the
BIND 9 shipped with OpenBSD
does not have this weakness. The
proactive security of OpenBSD
strikes again.” ... I discovered a
serious weakness in OpenBSD’s
PRNG, which allows an attacker
to predict the next transaction ID.

Also Klein’s 2007 and 2008

analyses of Microsoft IDs.

Bad news, continued:

Many ways for attackers

to beat ID+port randomization,

even if it’s cryptographic.

1. Attack repeatedly.

“An attacker who makes a few

billion random guesses is likely

to succeed at least once; tens of

millions of guesses are adequate

with a colliding attack;” etc.

2. Allocate most UDP ports

to other tasks, non-reusably.

3. Easy, succeeds instantly:

Sniff the network.



Also Klein’s 2008.02.06

analysis of IDs in OpenBSD,

NetBSD, FreeBSD, MacOS X:

OpenBSD ported BIND 9 into
their code tree, but rolled
their own PRNG for the DNS
transaction ID field). ... “We
decided ... to use a more
proven algorithm (LCG, Linear
Congruential Generator) instead.
Thanks to this wise decision, the
BIND 9 shipped with OpenBSD
does not have this weakness. The
proactive security of OpenBSD
strikes again.” ... I discovered a
serious weakness in OpenBSD’s
PRNG, which allows an attacker
to predict the next transaction ID.

Also Klein’s 2007 and 2008

analyses of Microsoft IDs.

Bad news, continued:

Many ways for attackers

to beat ID+port randomization,

even if it’s cryptographic.

1. Attack repeatedly.

“An attacker who makes a few

billion random guesses is likely

to succeed at least once; tens of

millions of guesses are adequate

with a colliding attack;” etc.

2. Allocate most UDP ports

to other tasks, non-reusably.

3. Easy, succeeds instantly:

Sniff the network.

Colliding attacks on caches

(2001 Bernstein),

aka “birthday attacks”:

Attacker triggers many queries

for one name lsec.be.

Typical cache allows 200 queries,

using 200 ID+port combinations.

Attacker sends forgeries

to many ID+port combinations

for this name lsec.be.

Any ID+port collision succeeds;

i.e., each forgery attempt

has 200=232 chance of success.



Also Klein’s 2008.02.06

analysis of IDs in OpenBSD,

NetBSD, FreeBSD, MacOS X:

OpenBSD ported BIND 9 into
their code tree, but rolled
their own PRNG for the DNS
transaction ID field). ... “We
decided ... to use a more
proven algorithm (LCG, Linear
Congruential Generator) instead.
Thanks to this wise decision, the
BIND 9 shipped with OpenBSD
does not have this weakness. The
proactive security of OpenBSD
strikes again.” ... I discovered a
serious weakness in OpenBSD’s
PRNG, which allows an attacker
to predict the next transaction ID.

Also Klein’s 2007 and 2008

analyses of Microsoft IDs.

Bad news, continued:

Many ways for attackers

to beat ID+port randomization,

even if it’s cryptographic.

1. Attack repeatedly.

“An attacker who makes a few

billion random guesses is likely

to succeed at least once; tens of

millions of guesses are adequate

with a colliding attack;” etc.

2. Allocate most UDP ports

to other tasks, non-reusably.

3. Easy, succeeds instantly:

Sniff the network.

Colliding attacks on caches

(2001 Bernstein),

aka “birthday attacks”:

Attacker triggers many queries

for one name lsec.be.

Typical cache allows 200 queries,

using 200 ID+port combinations.

Attacker sends forgeries

to many ID+port combinations

for this name lsec.be.

Any ID+port collision succeeds;

i.e., each forgery attempt

has 200=232 chance of success.



Also Klein’s 2008.02.06

analysis of IDs in OpenBSD,

NetBSD, FreeBSD, MacOS X:

OpenBSD ported BIND 9 into
their code tree, but rolled
their own PRNG for the DNS
transaction ID field). ... “We
decided ... to use a more
proven algorithm (LCG, Linear
Congruential Generator) instead.
Thanks to this wise decision, the
BIND 9 shipped with OpenBSD
does not have this weakness. The
proactive security of OpenBSD
strikes again.” ... I discovered a
serious weakness in OpenBSD’s
PRNG, which allows an attacker
to predict the next transaction ID.

Also Klein’s 2007 and 2008

analyses of Microsoft IDs.

Bad news, continued:

Many ways for attackers

to beat ID+port randomization,

even if it’s cryptographic.

1. Attack repeatedly.

“An attacker who makes a few

billion random guesses is likely

to succeed at least once; tens of

millions of guesses are adequate

with a colliding attack;” etc.

2. Allocate most UDP ports

to other tasks, non-reusably.

3. Easy, succeeds instantly:

Sniff the network.

Colliding attacks on caches

(2001 Bernstein),

aka “birthday attacks”:

Attacker triggers many queries

for one name lsec.be.

Typical cache allows 200 queries,

using 200 ID+port combinations.

Attacker sends forgeries

to many ID+port combinations

for this name lsec.be.

Any ID+port collision succeeds;

i.e., each forgery attempt

has 200=232 chance of success.



Bad news, continued:

Many ways for attackers

to beat ID+port randomization,

even if it’s cryptographic.

1. Attack repeatedly.

“An attacker who makes a few

billion random guesses is likely

to succeed at least once; tens of

millions of guesses are adequate

with a colliding attack;” etc.

2. Allocate most UDP ports

to other tasks, non-reusably.

3. Easy, succeeds instantly:

Sniff the network.

Colliding attacks on caches

(2001 Bernstein),

aka “birthday attacks”:

Attacker triggers many queries

for one name lsec.be.

Typical cache allows 200 queries,

using 200 ID+port combinations.

Attacker sends forgeries

to many ID+port combinations

for this name lsec.be.

Any ID+port collision succeeds;

i.e., each forgery attempt

has 200=232 chance of success.



Bad news, continued:

Many ways for attackers

to beat ID+port randomization,

even if it’s cryptographic.

1. Attack repeatedly.

“An attacker who makes a few

billion random guesses is likely

to succeed at least once; tens of

millions of guesses are adequate

with a colliding attack;” etc.

2. Allocate most UDP ports

to other tasks, non-reusably.

3. Easy, succeeds instantly:

Sniff the network.

Colliding attacks on caches

(2001 Bernstein),

aka “birthday attacks”:

Attacker triggers many queries

for one name lsec.be.

Typical cache allows 200 queries,

using 200 ID+port combinations.

Attacker sends forgeries

to many ID+port combinations

for this name lsec.be.

Any ID+port collision succeeds;

i.e., each forgery attempt

has 200=232 chance of success.

Port-allocation attacks

(2008.08 Bernstein):

Computer with a DNS cache

usually has more servers.

Attacker convinces those servers

to talk to the attacker on

tens of thousands of UDP ports.

Not all available UDP ports,

but almost all.

Computer doesn’t let the cache

reuse those UDP ports.

Cache chooses other UDP ports.

Attacker sends DNS forgeries

to those UDP ports.



Bad news, continued:

Many ways for attackers

to beat ID+port randomization,

even if it’s cryptographic.

1. Attack repeatedly.

“An attacker who makes a few

billion random guesses is likely

to succeed at least once; tens of

millions of guesses are adequate

with a colliding attack;” etc.

2. Allocate most UDP ports

to other tasks, non-reusably.

3. Easy, succeeds instantly:

Sniff the network.

Colliding attacks on caches

(2001 Bernstein),

aka “birthday attacks”:

Attacker triggers many queries

for one name lsec.be.

Typical cache allows 200 queries,

using 200 ID+port combinations.

Attacker sends forgeries

to many ID+port combinations

for this name lsec.be.

Any ID+port collision succeeds;

i.e., each forgery attempt

has 200=232 chance of success.

Port-allocation attacks

(2008.08 Bernstein):

Computer with a DNS cache

usually has more servers.

Attacker convinces those servers

to talk to the attacker on

tens of thousands of UDP ports.

Not all available UDP ports,

but almost all.

Computer doesn’t let the cache

reuse those UDP ports.

Cache chooses other UDP ports.

Attacker sends DNS forgeries

to those UDP ports.



Bad news, continued:

Many ways for attackers

to beat ID+port randomization,

even if it’s cryptographic.

1. Attack repeatedly.

“An attacker who makes a few

billion random guesses is likely

to succeed at least once; tens of

millions of guesses are adequate

with a colliding attack;” etc.

2. Allocate most UDP ports

to other tasks, non-reusably.

3. Easy, succeeds instantly:

Sniff the network.

Colliding attacks on caches

(2001 Bernstein),

aka “birthday attacks”:

Attacker triggers many queries

for one name lsec.be.

Typical cache allows 200 queries,

using 200 ID+port combinations.

Attacker sends forgeries

to many ID+port combinations

for this name lsec.be.

Any ID+port collision succeeds;

i.e., each forgery attempt

has 200=232 chance of success.

Port-allocation attacks

(2008.08 Bernstein):

Computer with a DNS cache

usually has more servers.

Attacker convinces those servers

to talk to the attacker on

tens of thousands of UDP ports.

Not all available UDP ports,

but almost all.

Computer doesn’t let the cache

reuse those UDP ports.

Cache chooses other UDP ports.

Attacker sends DNS forgeries

to those UDP ports.



Colliding attacks on caches

(2001 Bernstein),

aka “birthday attacks”:

Attacker triggers many queries

for one name lsec.be.

Typical cache allows 200 queries,

using 200 ID+port combinations.

Attacker sends forgeries

to many ID+port combinations

for this name lsec.be.

Any ID+port collision succeeds;

i.e., each forgery attempt

has 200=232 chance of success.

Port-allocation attacks

(2008.08 Bernstein):

Computer with a DNS cache

usually has more servers.

Attacker convinces those servers

to talk to the attacker on

tens of thousands of UDP ports.

Not all available UDP ports,

but almost all.

Computer doesn’t let the cache

reuse those UDP ports.

Cache chooses other UDP ports.

Attacker sends DNS forgeries

to those UDP ports.



Colliding attacks on caches

(2001 Bernstein),

aka “birthday attacks”:

Attacker triggers many queries

for one name lsec.be.

Typical cache allows 200 queries,

using 200 ID+port combinations.

Attacker sends forgeries

to many ID+port combinations

for this name lsec.be.

Any ID+port collision succeeds;

i.e., each forgery attempt

has 200=232 chance of success.

Port-allocation attacks

(2008.08 Bernstein):

Computer with a DNS cache

usually has more servers.

Attacker convinces those servers

to talk to the attacker on

tens of thousands of UDP ports.

Not all available UDP ports,

but almost all.

Computer doesn’t let the cache

reuse those UDP ports.

Cache chooses other UDP ports.

Attacker sends DNS forgeries

to those UDP ports.

Clients can try to reduce

a forgery’s success chance:

suppress duplicate queries;

randomly replace google.com

by, e.g., GooGLe.cOm; remove

cache entries in case of doubt;

limit caching; ask twice; etc.

Many performance problems.

Many interoperability problems.

Many bogus security analyses.

Mostly ineffective against

smart blind attackers, and

all completely ineffective

against sniffing attackers.



Colliding attacks on caches

(2001 Bernstein),

aka “birthday attacks”:

Attacker triggers many queries

for one name lsec.be.

Typical cache allows 200 queries,

using 200 ID+port combinations.

Attacker sends forgeries

to many ID+port combinations

for this name lsec.be.

Any ID+port collision succeeds;

i.e., each forgery attempt

has 200=232 chance of success.

Port-allocation attacks

(2008.08 Bernstein):

Computer with a DNS cache

usually has more servers.

Attacker convinces those servers

to talk to the attacker on

tens of thousands of UDP ports.

Not all available UDP ports,

but almost all.

Computer doesn’t let the cache

reuse those UDP ports.

Cache chooses other UDP ports.

Attacker sends DNS forgeries

to those UDP ports.

Clients can try to reduce

a forgery’s success chance:

suppress duplicate queries;

randomly replace google.com

by, e.g., GooGLe.cOm; remove

cache entries in case of doubt;

limit caching; ask twice; etc.

Many performance problems.

Many interoperability problems.

Many bogus security analyses.

Mostly ineffective against

smart blind attackers, and

all completely ineffective

against sniffing attackers.



Colliding attacks on caches

(2001 Bernstein),

aka “birthday attacks”:

Attacker triggers many queries

for one name lsec.be.

Typical cache allows 200 queries,

using 200 ID+port combinations.

Attacker sends forgeries

to many ID+port combinations

for this name lsec.be.

Any ID+port collision succeeds;

i.e., each forgery attempt

has 200=232 chance of success.

Port-allocation attacks

(2008.08 Bernstein):

Computer with a DNS cache

usually has more servers.

Attacker convinces those servers

to talk to the attacker on

tens of thousands of UDP ports.

Not all available UDP ports,

but almost all.

Computer doesn’t let the cache

reuse those UDP ports.

Cache chooses other UDP ports.

Attacker sends DNS forgeries

to those UDP ports.

Clients can try to reduce

a forgery’s success chance:

suppress duplicate queries;

randomly replace google.com

by, e.g., GooGLe.cOm; remove

cache entries in case of doubt;

limit caching; ask twice; etc.

Many performance problems.

Many interoperability problems.

Many bogus security analyses.

Mostly ineffective against

smart blind attackers, and

all completely ineffective

against sniffing attackers.



Port-allocation attacks

(2008.08 Bernstein):

Computer with a DNS cache

usually has more servers.

Attacker convinces those servers

to talk to the attacker on

tens of thousands of UDP ports.

Not all available UDP ports,

but almost all.

Computer doesn’t let the cache

reuse those UDP ports.

Cache chooses other UDP ports.

Attacker sends DNS forgeries

to those UDP ports.

Clients can try to reduce

a forgery’s success chance:

suppress duplicate queries;

randomly replace google.com

by, e.g., GooGLe.cOm; remove

cache entries in case of doubt;

limit caching; ask twice; etc.

Many performance problems.

Many interoperability problems.

Many bogus security analyses.

Mostly ineffective against

smart blind attackers, and

all completely ineffective

against sniffing attackers.



Port-allocation attacks

(2008.08 Bernstein):

Computer with a DNS cache

usually has more servers.

Attacker convinces those servers

to talk to the attacker on

tens of thousands of UDP ports.

Not all available UDP ports,

but almost all.

Computer doesn’t let the cache

reuse those UDP ports.

Cache chooses other UDP ports.

Attacker sends DNS forgeries

to those UDP ports.

Clients can try to reduce

a forgery’s success chance:

suppress duplicate queries;

randomly replace google.com

by, e.g., GooGLe.cOm; remove

cache entries in case of doubt;

limit caching; ask twice; etc.

Many performance problems.

Many interoperability problems.

Many bogus security analyses.

Mostly ineffective against

smart blind attackers, and

all completely ineffective

against sniffing attackers.

Who does DNS trust?

What we’ve learned:

Attackers sniffing the network

have trivial control over DNS.

Blind attackers around the world

also have some control.



Port-allocation attacks

(2008.08 Bernstein):

Computer with a DNS cache

usually has more servers.

Attacker convinces those servers

to talk to the attacker on

tens of thousands of UDP ports.

Not all available UDP ports,

but almost all.

Computer doesn’t let the cache

reuse those UDP ports.

Cache chooses other UDP ports.

Attacker sends DNS forgeries

to those UDP ports.

Clients can try to reduce

a forgery’s success chance:

suppress duplicate queries;

randomly replace google.com

by, e.g., GooGLe.cOm; remove

cache entries in case of doubt;

limit caching; ask twice; etc.

Many performance problems.

Many interoperability problems.

Many bogus security analyses.

Mostly ineffective against

smart blind attackers, and

all completely ineffective

against sniffing attackers.

Who does DNS trust?

What we’ve learned:

Attackers sniffing the network

have trivial control over DNS.

Blind attackers around the world

also have some control.



Port-allocation attacks

(2008.08 Bernstein):

Computer with a DNS cache

usually has more servers.

Attacker convinces those servers

to talk to the attacker on

tens of thousands of UDP ports.

Not all available UDP ports,

but almost all.

Computer doesn’t let the cache

reuse those UDP ports.

Cache chooses other UDP ports.

Attacker sends DNS forgeries

to those UDP ports.

Clients can try to reduce

a forgery’s success chance:

suppress duplicate queries;

randomly replace google.com

by, e.g., GooGLe.cOm; remove

cache entries in case of doubt;

limit caching; ask twice; etc.

Many performance problems.

Many interoperability problems.

Many bogus security analyses.

Mostly ineffective against

smart blind attackers, and

all completely ineffective

against sniffing attackers.

Who does DNS trust?

What we’ve learned:

Attackers sniffing the network

have trivial control over DNS.

Blind attackers around the world

also have some control.



Clients can try to reduce

a forgery’s success chance:

suppress duplicate queries;

randomly replace google.com

by, e.g., GooGLe.cOm; remove

cache entries in case of doubt;

limit caching; ask twice; etc.

Many performance problems.

Many interoperability problems.

Many bogus security analyses.

Mostly ineffective against

smart blind attackers, and

all completely ineffective

against sniffing attackers.

Who does DNS trust?

What we’ve learned:

Attackers sniffing the network

have trivial control over DNS.

Blind attackers around the world

also have some control.



Clients can try to reduce

a forgery’s success chance:

suppress duplicate queries;

randomly replace google.com

by, e.g., GooGLe.cOm; remove

cache entries in case of doubt;

limit caching; ask twice; etc.

Many performance problems.

Many interoperability problems.

Many bogus security analyses.

Mostly ineffective against

smart blind attackers, and

all completely ineffective

against sniffing attackers.

Who does DNS trust?

What we’ve learned:

Attackers sniffing the network

have trivial control over DNS.

Blind attackers around the world

also have some control.

What if packet forgeries

were magically eliminated?

What if all DNS packets had

unforgeable sender addresses?

Who would still control DNS?



Clients can try to reduce

a forgery’s success chance:

suppress duplicate queries;

randomly replace google.com

by, e.g., GooGLe.cOm; remove

cache entries in case of doubt;

limit caching; ask twice; etc.

Many performance problems.

Many interoperability problems.

Many bogus security analyses.

Mostly ineffective against

smart blind attackers, and

all completely ineffective

against sniffing attackers.

Who does DNS trust?

What we’ve learned:

Attackers sniffing the network

have trivial control over DNS.

Blind attackers around the world

also have some control.

What if packet forgeries

were magically eliminated?

What if all DNS packets had

unforgeable sender addresses?

Who would still control DNS?

Original DNS cache algorithms

specified in RFC 1034

allowed any DNS server

to control all DNS records.

Cache asks SST.to DNS server

about www.SST.to.

Server says: www.SST.to has

canonical name www.lsec.be,

which has address

157.22.245.20.

Cache records address of

www.lsec.be. Browser

later asks about www.lsec.be,

receives 157.22.245.20.



Clients can try to reduce

a forgery’s success chance:

suppress duplicate queries;

randomly replace google.com

by, e.g., GooGLe.cOm; remove

cache entries in case of doubt;

limit caching; ask twice; etc.

Many performance problems.

Many interoperability problems.

Many bogus security analyses.

Mostly ineffective against

smart blind attackers, and

all completely ineffective

against sniffing attackers.

Who does DNS trust?

What we’ve learned:

Attackers sniffing the network

have trivial control over DNS.

Blind attackers around the world

also have some control.

What if packet forgeries

were magically eliminated?

What if all DNS packets had

unforgeable sender addresses?

Who would still control DNS?

Original DNS cache algorithms

specified in RFC 1034

allowed any DNS server

to control all DNS records.

Cache asks SST.to DNS server

about www.SST.to.

Server says: www.SST.to has

canonical name www.lsec.be,

which has address

157.22.245.20.

Cache records address of

www.lsec.be. Browser

later asks about www.lsec.be,

receives 157.22.245.20.



Clients can try to reduce

a forgery’s success chance:

suppress duplicate queries;

randomly replace google.com

by, e.g., GooGLe.cOm; remove

cache entries in case of doubt;

limit caching; ask twice; etc.

Many performance problems.

Many interoperability problems.

Many bogus security analyses.

Mostly ineffective against

smart blind attackers, and

all completely ineffective

against sniffing attackers.

Who does DNS trust?

What we’ve learned:

Attackers sniffing the network

have trivial control over DNS.

Blind attackers around the world

also have some control.

What if packet forgeries

were magically eliminated?

What if all DNS packets had

unforgeable sender addresses?

Who would still control DNS?

Original DNS cache algorithms

specified in RFC 1034

allowed any DNS server

to control all DNS records.

Cache asks SST.to DNS server

about www.SST.to.

Server says: www.SST.to has

canonical name www.lsec.be,

which has address

157.22.245.20.

Cache records address of

www.lsec.be. Browser

later asks about www.lsec.be,

receives 157.22.245.20.



Who does DNS trust?

What we’ve learned:

Attackers sniffing the network

have trivial control over DNS.

Blind attackers around the world

also have some control.

What if packet forgeries

were magically eliminated?

What if all DNS packets had

unforgeable sender addresses?

Who would still control DNS?

Original DNS cache algorithms

specified in RFC 1034

allowed any DNS server

to control all DNS records.

Cache asks SST.to DNS server

about www.SST.to.

Server says: www.SST.to has

canonical name www.lsec.be,

which has address

157.22.245.20.

Cache records address of

www.lsec.be. Browser

later asks about www.lsec.be,

receives 157.22.245.20.



Who does DNS trust?

What we’ve learned:

Attackers sniffing the network

have trivial control over DNS.

Blind attackers around the world

also have some control.

What if packet forgeries

were magically eliminated?

What if all DNS packets had

unforgeable sender addresses?

Who would still control DNS?

Original DNS cache algorithms

specified in RFC 1034

allowed any DNS server

to control all DNS records.

Cache asks SST.to DNS server

about www.SST.to.

Server says: www.SST.to has

canonical name www.lsec.be,

which has address

157.22.245.20.

Cache records address of

www.lsec.be. Browser

later asks about www.lsec.be,

receives 157.22.245.20.

The “bailiwick” fix

(1997 BIND; 2003 Microsoft):

The SST.to DNS servers

are authorized to control

the name SST.to

and names ending .SST.to.

Not authorized to control

www.lsec.be.

Caches reject www.lsec.be data

from the SST.to DNS servers.

Bugs continue cropping up.

e.g. BIND bug fixed 2003:

microsoft.com server can say

that google.com has no address.



Who does DNS trust?

What we’ve learned:

Attackers sniffing the network

have trivial control over DNS.

Blind attackers around the world

also have some control.

What if packet forgeries

were magically eliminated?

What if all DNS packets had

unforgeable sender addresses?

Who would still control DNS?

Original DNS cache algorithms

specified in RFC 1034

allowed any DNS server

to control all DNS records.

Cache asks SST.to DNS server

about www.SST.to.

Server says: www.SST.to has

canonical name www.lsec.be,

which has address

157.22.245.20.

Cache records address of

www.lsec.be. Browser

later asks about www.lsec.be,

receives 157.22.245.20.

The “bailiwick” fix

(1997 BIND; 2003 Microsoft):

The SST.to DNS servers

are authorized to control

the name SST.to

and names ending .SST.to.

Not authorized to control

www.lsec.be.

Caches reject www.lsec.be data

from the SST.to DNS servers.

Bugs continue cropping up.

e.g. BIND bug fixed 2003:

microsoft.com server can say

that google.com has no address.



Who does DNS trust?

What we’ve learned:

Attackers sniffing the network

have trivial control over DNS.

Blind attackers around the world

also have some control.

What if packet forgeries

were magically eliminated?

What if all DNS packets had

unforgeable sender addresses?

Who would still control DNS?

Original DNS cache algorithms

specified in RFC 1034

allowed any DNS server

to control all DNS records.

Cache asks SST.to DNS server

about www.SST.to.

Server says: www.SST.to has

canonical name www.lsec.be,

which has address

157.22.245.20.

Cache records address of

www.lsec.be. Browser

later asks about www.lsec.be,

receives 157.22.245.20.

The “bailiwick” fix

(1997 BIND; 2003 Microsoft):

The SST.to DNS servers

are authorized to control

the name SST.to

and names ending .SST.to.

Not authorized to control

www.lsec.be.

Caches reject www.lsec.be data

from the SST.to DNS servers.

Bugs continue cropping up.

e.g. BIND bug fixed 2003:

microsoft.com server can say

that google.com has no address.



Original DNS cache algorithms

specified in RFC 1034

allowed any DNS server

to control all DNS records.

Cache asks SST.to DNS server

about www.SST.to.

Server says: www.SST.to has

canonical name www.lsec.be,

which has address

157.22.245.20.

Cache records address of

www.lsec.be. Browser

later asks about www.lsec.be,

receives 157.22.245.20.

The “bailiwick” fix

(1997 BIND; 2003 Microsoft):

The SST.to DNS servers

are authorized to control

the name SST.to

and names ending .SST.to.

Not authorized to control

www.lsec.be.

Caches reject www.lsec.be data

from the SST.to DNS servers.

Bugs continue cropping up.

e.g. BIND bug fixed 2003:

microsoft.com server can say

that google.com has no address.



Original DNS cache algorithms

specified in RFC 1034

allowed any DNS server

to control all DNS records.

Cache asks SST.to DNS server

about www.SST.to.

Server says: www.SST.to has

canonical name www.lsec.be,

which has address

157.22.245.20.

Cache records address of

www.lsec.be. Browser

later asks about www.lsec.be,

receives 157.22.245.20.

The “bailiwick” fix

(1997 BIND; 2003 Microsoft):

The SST.to DNS servers

are authorized to control

the name SST.to

and names ending .SST.to.

Not authorized to control

www.lsec.be.

Caches reject www.lsec.be data

from the SST.to DNS servers.

Bugs continue cropping up.

e.g. BIND bug fixed 2003:

microsoft.com server can say

that google.com has no address.

For performance reasons,

administrators sometimes set up

third-party DNS servers.

e.g. The rsa.com administrator

set up two rsa.com servers:

one of his own computers

and a third-party computer.

In 2000, an attacker

broke into the third-party server

and misdirected www.rsa.com.

The rsa.com administrator

no longer uses third-party servers.



Original DNS cache algorithms

specified in RFC 1034

allowed any DNS server

to control all DNS records.

Cache asks SST.to DNS server

about www.SST.to.

Server says: www.SST.to has

canonical name www.lsec.be,

which has address

157.22.245.20.

Cache records address of

www.lsec.be. Browser

later asks about www.lsec.be,

receives 157.22.245.20.

The “bailiwick” fix

(1997 BIND; 2003 Microsoft):

The SST.to DNS servers

are authorized to control

the name SST.to

and names ending .SST.to.

Not authorized to control

www.lsec.be.

Caches reject www.lsec.be data

from the SST.to DNS servers.

Bugs continue cropping up.

e.g. BIND bug fixed 2003:

microsoft.com server can say

that google.com has no address.

For performance reasons,

administrators sometimes set up

third-party DNS servers.

e.g. The rsa.com administrator

set up two rsa.com servers:

one of his own computers

and a third-party computer.

In 2000, an attacker

broke into the third-party server

and misdirected www.rsa.com.

The rsa.com administrator

no longer uses third-party servers.



Original DNS cache algorithms

specified in RFC 1034

allowed any DNS server

to control all DNS records.

Cache asks SST.to DNS server

about www.SST.to.

Server says: www.SST.to has

canonical name www.lsec.be,

which has address

157.22.245.20.

Cache records address of

www.lsec.be. Browser

later asks about www.lsec.be,

receives 157.22.245.20.

The “bailiwick” fix

(1997 BIND; 2003 Microsoft):

The SST.to DNS servers

are authorized to control

the name SST.to

and names ending .SST.to.

Not authorized to control

www.lsec.be.

Caches reject www.lsec.be data

from the SST.to DNS servers.

Bugs continue cropping up.

e.g. BIND bug fixed 2003:

microsoft.com server can say

that google.com has no address.

For performance reasons,

administrators sometimes set up

third-party DNS servers.

e.g. The rsa.com administrator

set up two rsa.com servers:

one of his own computers

and a third-party computer.

In 2000, an attacker

broke into the third-party server

and misdirected www.rsa.com.

The rsa.com administrator

no longer uses third-party servers.



The “bailiwick” fix

(1997 BIND; 2003 Microsoft):

The SST.to DNS servers

are authorized to control

the name SST.to

and names ending .SST.to.

Not authorized to control

www.lsec.be.

Caches reject www.lsec.be data

from the SST.to DNS servers.

Bugs continue cropping up.

e.g. BIND bug fixed 2003:

microsoft.com server can say

that google.com has no address.

For performance reasons,

administrators sometimes set up

third-party DNS servers.

e.g. The rsa.com administrator

set up two rsa.com servers:

one of his own computers

and a third-party computer.

In 2000, an attacker

broke into the third-party server

and misdirected www.rsa.com.

The rsa.com administrator

no longer uses third-party servers.



The “bailiwick” fix

(1997 BIND; 2003 Microsoft):

The SST.to DNS servers

are authorized to control

the name SST.to

and names ending .SST.to.

Not authorized to control

www.lsec.be.

Caches reject www.lsec.be data

from the SST.to DNS servers.

Bugs continue cropping up.

e.g. BIND bug fixed 2003:

microsoft.com server can say

that google.com has no address.

For performance reasons,

administrators sometimes set up

third-party DNS servers.

e.g. The rsa.com administrator

set up two rsa.com servers:

one of his own computers

and a third-party computer.

In 2000, an attacker

broke into the third-party server

and misdirected www.rsa.com.

The rsa.com administrator

no longer uses third-party servers.

Browser at cert.org

DNS cache

WV UT
PQ RS

OO

.lsec.be
DNS server

OO

.lsec.be
database

OO

Administrator at lsec.be

WV UT

PQ RS
OO

“The web server

www.lsec.be

has IP address

81.246.94.54.”

_g



The “bailiwick” fix

(1997 BIND; 2003 Microsoft):

The SST.to DNS servers

are authorized to control

the name SST.to

and names ending .SST.to.

Not authorized to control

www.lsec.be.

Caches reject www.lsec.be data

from the SST.to DNS servers.

Bugs continue cropping up.

e.g. BIND bug fixed 2003:

microsoft.com server can say

that google.com has no address.

For performance reasons,

administrators sometimes set up

third-party DNS servers.

e.g. The rsa.com administrator

set up two rsa.com servers:

one of his own computers

and a third-party computer.

In 2000, an attacker

broke into the third-party server

and misdirected www.rsa.com.

The rsa.com administrator

no longer uses third-party servers.

Browser at cert.org

DNS cache

WV UT
PQ RS

OO

.lsec.be
DNS server

OO

.lsec.be
database

OO

Administrator at lsec.be

WV UT

PQ RS
OO

“The web server

www.lsec.be

has IP address

81.246.94.54.”

_g



The “bailiwick” fix

(1997 BIND; 2003 Microsoft):

The SST.to DNS servers

are authorized to control

the name SST.to

and names ending .SST.to.

Not authorized to control

www.lsec.be.

Caches reject www.lsec.be data

from the SST.to DNS servers.

Bugs continue cropping up.

e.g. BIND bug fixed 2003:

microsoft.com server can say

that google.com has no address.

For performance reasons,

administrators sometimes set up

third-party DNS servers.

e.g. The rsa.com administrator

set up two rsa.com servers:

one of his own computers

and a third-party computer.

In 2000, an attacker

broke into the third-party server

and misdirected www.rsa.com.

The rsa.com administrator

no longer uses third-party servers.

Browser at cert.org

DNS cache

WV UT
PQ RS

OO

.lsec.be
DNS server

OO

.lsec.be
database

OO

Administrator at lsec.be

WV UT

PQ RS
OO

“The web server

www.lsec.be

has IP address

81.246.94.54.”

_g



For performance reasons,

administrators sometimes set up

third-party DNS servers.

e.g. The rsa.com administrator

set up two rsa.com servers:

one of his own computers

and a third-party computer.

In 2000, an attacker

broke into the third-party server

and misdirected www.rsa.com.

The rsa.com administrator

no longer uses third-party servers.

Browser at cert.org

DNS cache

WV UT
PQ RS

OO

.lsec.be
DNS server

OO

.lsec.be
database

OO

Administrator at lsec.be

WV UT

PQ RS
OO

“The web server

www.lsec.be

has IP address

81.246.94.54.”

_g



For performance reasons,

administrators sometimes set up

third-party DNS servers.

e.g. The rsa.com administrator

set up two rsa.com servers:

one of his own computers

and a third-party computer.

In 2000, an attacker

broke into the third-party server

and misdirected www.rsa.com.

The rsa.com administrator

no longer uses third-party servers.

Browser at cert.org

DNS cache

WV UT
PQ RS

OO

.lsec.be
DNS server

OO

.lsec.be
database

OO

Administrator at lsec.be

WV UT

PQ RS
OO

“The web server

www.lsec.be

has IP address

81.246.94.54.”

_g
DNS cache learns location of

.lsec.be DNS server from

.be DNS server:

at cert.org DNS cache
'& %$ ! "#

.be
DNS server

OO

.be
database

WV UT
PQ RS

OO

at lsec.be Administrator
'& %$ ! "#

OO

“The DNS server

for .lsec.be

is ns2

with IP address

80.92.67.140.”

5=



For performance reasons,

administrators sometimes set up

third-party DNS servers.

e.g. The rsa.com administrator

set up two rsa.com servers:

one of his own computers

and a third-party computer.

In 2000, an attacker

broke into the third-party server

and misdirected www.rsa.com.

The rsa.com administrator

no longer uses third-party servers.

Browser at cert.org

DNS cache

WV UT
PQ RS

OO

.lsec.be
DNS server

OO

.lsec.be
database

OO

Administrator at lsec.be

WV UT

PQ RS
OO

“The web server

www.lsec.be

has IP address

81.246.94.54.”

_g
DNS cache learns location of

.lsec.be DNS server from

.be DNS server:

at cert.org DNS cache
'& %$ ! "#

.be
DNS server

OO

.be
database

WV UT
PQ RS

OO

at lsec.be Administrator
'& %$ ! "#

OO

“The DNS server

for .lsec.be

is ns2

with IP address

80.92.67.140.”

5=



For performance reasons,

administrators sometimes set up

third-party DNS servers.

e.g. The rsa.com administrator

set up two rsa.com servers:

one of his own computers

and a third-party computer.

In 2000, an attacker

broke into the third-party server

and misdirected www.rsa.com.

The rsa.com administrator

no longer uses third-party servers.

Browser at cert.org

DNS cache

WV UT
PQ RS

OO

.lsec.be
DNS server

OO

.lsec.be
database

OO

Administrator at lsec.be

WV UT

PQ RS
OO

“The web server

www.lsec.be

has IP address

81.246.94.54.”

_g
DNS cache learns location of

.lsec.be DNS server from

.be DNS server:

at cert.org DNS cache
'& %$ ! "#

.be
DNS server

OO

.be
database

WV UT
PQ RS

OO

at lsec.be Administrator
'& %$ ! "#

OO

“The DNS server

for .lsec.be

is ns2

with IP address

80.92.67.140.”

5=



Browser at cert.org

DNS cache

WV UT
PQ RS

OO

.lsec.be
DNS server

OO

.lsec.be
database

OO

Administrator at lsec.be

WV UT

PQ RS
OO

“The web server

www.lsec.be

has IP address

81.246.94.54.”

_g
DNS cache learns location of

.lsec.be DNS server from

.be DNS server:

at cert.org DNS cache
'& %$ ! "#

.be
DNS server

OO

.be
database

WV UT
PQ RS

OO

at lsec.be Administrator
'& %$ ! "#

OO

“The DNS server

for .lsec.be

is ns2

with IP address

80.92.67.140.”

5=



Browser at cert.org

DNS cache

WV UT
PQ RS

OO

.lsec.be
DNS server

OO

.lsec.be
database

OO

Administrator at lsec.be

WV UT

PQ RS
OO

“The web server

www.lsec.be

has IP address

81.246.94.54.”

_g
DNS cache learns location of

.lsec.be DNS server from

.be DNS server:

at cert.org DNS cache
'& %$ ! "#

.be
DNS server

OO

.be
database

WV UT
PQ RS

OO

at lsec.be Administrator
'& %$ ! "#

OO

“The DNS server

for .lsec.be

is ns2

with IP address

80.92.67.140.”

5=

All packets to/from DNS cache:

God sayeth unto the DNS cache:
“DNS Root K.Heaven 193.0.14.129”

193.0.14.129
“DNS .be brussels 193.190.135.4”

// DNS cache
“Web www.lsec.be?”oo

193.190.135.4
“DNS .lsec.be ns2 80.92.67.140”

// DNS cache
“Web www.lsec.be?”oo

80.92.67.140
“Web www.lsec.be 81.246.94.54”

// DNS cache
“Web www.lsec.be?”oo



Browser at cert.org

DNS cache

WV UT
PQ RS

OO

.lsec.be
DNS server

OO

.lsec.be
database

OO

Administrator at lsec.be

WV UT

PQ RS
OO

“The web server

www.lsec.be

has IP address

81.246.94.54.”

_g
DNS cache learns location of

.lsec.be DNS server from

.be DNS server:

at cert.org DNS cache
'& %$ ! "#

.be
DNS server

OO

.be
database

WV UT
PQ RS

OO

at lsec.be Administrator
'& %$ ! "#

OO

“The DNS server

for .lsec.be

is ns2

with IP address

80.92.67.140.”

5=

All packets to/from DNS cache:

God sayeth unto the DNS cache:
“DNS Root K.Heaven 193.0.14.129”

193.0.14.129
“DNS .be brussels 193.190.135.4”

// DNS cache
“Web www.lsec.be?”oo

193.190.135.4
“DNS .lsec.be ns2 80.92.67.140”

// DNS cache
“Web www.lsec.be?”oo

80.92.67.140
“Web www.lsec.be 81.246.94.54”

// DNS cache
“Web www.lsec.be?”oo



Browser at cert.org

DNS cache

WV UT
PQ RS

OO

.lsec.be
DNS server

OO

.lsec.be
database

OO

Administrator at lsec.be

WV UT

PQ RS
OO

“The web server

www.lsec.be

has IP address

81.246.94.54.”

_g
DNS cache learns location of

.lsec.be DNS server from

.be DNS server:

at cert.org DNS cache
'& %$ ! "#

.be
DNS server

OO

.be
database

WV UT
PQ RS

OO

at lsec.be Administrator
'& %$ ! "#

OO

“The DNS server

for .lsec.be

is ns2

with IP address

80.92.67.140.”

5=

All packets to/from DNS cache:

God sayeth unto the DNS cache:
“DNS Root K.Heaven 193.0.14.129”

193.0.14.129
“DNS .be brussels 193.190.135.4”

// DNS cache
“Web www.lsec.be?”oo

193.190.135.4
“DNS .lsec.be ns2 80.92.67.140”

// DNS cache
“Web www.lsec.be?”oo

80.92.67.140
“Web www.lsec.be 81.246.94.54”

// DNS cache
“Web www.lsec.be?”oo



DNS cache learns location of

.lsec.be DNS server from

.be DNS server:

at cert.org DNS cache
'& %$ ! "#

.be
DNS server

OO

.be
database

WV UT
PQ RS

OO

at lsec.be Administrator
'& %$ ! "#

OO

“The DNS server

for .lsec.be

is ns2

with IP address

80.92.67.140.”

5=

All packets to/from DNS cache:

God sayeth unto the DNS cache:
“DNS Root K.Heaven 193.0.14.129”

193.0.14.129
“DNS .be brussels 193.190.135.4”

// DNS cache
“Web www.lsec.be?”oo

193.190.135.4
“DNS .lsec.be ns2 80.92.67.140”

// DNS cache
“Web www.lsec.be?”oo

80.92.67.140
“Web www.lsec.be 81.246.94.54”

// DNS cache
“Web www.lsec.be?”oo



DNS cache learns location of

.lsec.be DNS server from

.be DNS server:

at cert.org DNS cache
'& %$ ! "#

.be
DNS server

OO

.be
database

WV UT
PQ RS

OO

at lsec.be Administrator
'& %$ ! "#

OO

“The DNS server

for .lsec.be

is ns2

with IP address

80.92.67.140.”

5=

All packets to/from DNS cache:

God sayeth unto the DNS cache:
“DNS Root K.Heaven 193.0.14.129”

193.0.14.129
“DNS .be brussels 193.190.135.4”

// DNS cache
“Web www.lsec.be?”oo

193.190.135.4
“DNS .lsec.be ns2 80.92.67.140”

// DNS cache
“Web www.lsec.be?”oo

80.92.67.140
“Web www.lsec.be 81.246.94.54”

// DNS cache
“Web www.lsec.be?”oo

GodWV UT

PQ RS

&&NNNNNNNNNNN Browser

Root
DNS
server

// DNS
cache

WV UT
PQ RS

OO

.be
DNS
server

::uuuuuuuuuuu .lsec.be
DNS
server

OO

.be
data

at Internet
Central HQ

base

OO

.lsec.be
database

OO

at lsec.be

Administrator

WV UT

PQ RS
OOhhPPPPPPPP

\d

6>



DNS cache learns location of

.lsec.be DNS server from

.be DNS server:

at cert.org DNS cache
'& %$ ! "#

.be
DNS server

OO

.be
database

WV UT
PQ RS

OO

at lsec.be Administrator
'& %$ ! "#

OO

“The DNS server

for .lsec.be

is ns2

with IP address

80.92.67.140.”

5=

All packets to/from DNS cache:

God sayeth unto the DNS cache:
“DNS Root K.Heaven 193.0.14.129”

193.0.14.129
“DNS .be brussels 193.190.135.4”

// DNS cache
“Web www.lsec.be?”oo

193.190.135.4
“DNS .lsec.be ns2 80.92.67.140”

// DNS cache
“Web www.lsec.be?”oo

80.92.67.140
“Web www.lsec.be 81.246.94.54”

// DNS cache
“Web www.lsec.be?”oo

GodWV UT

PQ RS

&&NNNNNNNNNNN Browser

Root
DNS
server

// DNS
cache

WV UT
PQ RS

OO

.be
DNS
server

::uuuuuuuuuuu .lsec.be
DNS
server

OO

.be
data

at Internet
Central HQ

base

OO

.lsec.be
database

OO

at lsec.be

Administrator

WV UT

PQ RS
OOhhPPPPPPPP

\d

6>



DNS cache learns location of

.lsec.be DNS server from

.be DNS server:

at cert.org DNS cache
'& %$ ! "#

.be
DNS server

OO

.be
database

WV UT
PQ RS

OO

at lsec.be Administrator
'& %$ ! "#

OO

“The DNS server

for .lsec.be

is ns2

with IP address

80.92.67.140.”

5=

All packets to/from DNS cache:

God sayeth unto the DNS cache:
“DNS Root K.Heaven 193.0.14.129”

193.0.14.129
“DNS .be brussels 193.190.135.4”

// DNS cache
“Web www.lsec.be?”oo

193.190.135.4
“DNS .lsec.be ns2 80.92.67.140”

// DNS cache
“Web www.lsec.be?”oo

80.92.67.140
“Web www.lsec.be 81.246.94.54”

// DNS cache
“Web www.lsec.be?”oo

GodWV UT

PQ RS

&&NNNNNNNNNNN Browser

Root
DNS
server

// DNS
cache

WV UT
PQ RS

OO

.be
DNS
server

::uuuuuuuuuuu .lsec.be
DNS
server

OO

.be
data

at Internet
Central HQ

base

OO

.lsec.be
database

OO

at lsec.be

Administrator

WV UT

PQ RS
OOhhPPPPPPPP

\d

6>



All packets to/from DNS cache:

God sayeth unto the DNS cache:
“DNS Root K.Heaven 193.0.14.129”

193.0.14.129
“DNS .be brussels 193.190.135.4”

// DNS cache
“Web www.lsec.be?”oo

193.190.135.4
“DNS .lsec.be ns2 80.92.67.140”

// DNS cache
“Web www.lsec.be?”oo

80.92.67.140
“Web www.lsec.be 81.246.94.54”

// DNS cache
“Web www.lsec.be?”oo

GodWV UT

PQ RS

&&NNNNNNNNNNN Browser

Root
DNS
server

// DNS
cache

WV UT
PQ RS

OO

.be
DNS
server

::uuuuuuuuuuu .lsec.be
DNS
server

OO

.be
data

at Internet
Central HQ

base

OO

.lsec.be
database

OO

at lsec.be

Administrator

WV UT

PQ RS
OOhhPPPPPPPP

\d

6>



All packets to/from DNS cache:

God sayeth unto the DNS cache:
“DNS Root K.Heaven 193.0.14.129”

193.0.14.129
“DNS .be brussels 193.190.135.4”

// DNS cache
“Web www.lsec.be?”oo

193.190.135.4
“DNS .lsec.be ns2 80.92.67.140”

// DNS cache
“Web www.lsec.be?”oo

80.92.67.140
“Web www.lsec.be 81.246.94.54”

// DNS cache
“Web www.lsec.be?”oo

GodWV UT

PQ RS

&&NNNNNNNNNNN Browser

Root
DNS
server

// DNS
cache

WV UT
PQ RS

OO

.be
DNS
server

::uuuuuuuuuuu .lsec.be
DNS
server

OO

.be
data

at Internet
Central HQ

base

OO

.lsec.be
database

OO

at lsec.be

Administrator

WV UT

PQ RS
OOhhPPPPPPPP

\d

6>

This architecture means that

the www.lsec.be address

is controlled

by the DNS root server;

by the .be DNS server; and

by the lsec.be DNS server.

This isn’t just the

lsec.be DNS server!

e.g. 2001 incident:

An attacker fooled

Internet Central Headquarters

into accepting fake data

for microsoft.com.



All packets to/from DNS cache:

God sayeth unto the DNS cache:
“DNS Root K.Heaven 193.0.14.129”

193.0.14.129
“DNS .be brussels 193.190.135.4”

// DNS cache
“Web www.lsec.be?”oo

193.190.135.4
“DNS .lsec.be ns2 80.92.67.140”

// DNS cache
“Web www.lsec.be?”oo

80.92.67.140
“Web www.lsec.be 81.246.94.54”

// DNS cache
“Web www.lsec.be?”oo

GodWV UT

PQ RS

&&NNNNNNNNNNN Browser

Root
DNS
server

// DNS
cache

WV UT
PQ RS

OO

.be
DNS
server

::uuuuuuuuuuu .lsec.be
DNS
server

OO

.be
data

at Internet
Central HQ

base

OO

.lsec.be
database

OO

at lsec.be

Administrator

WV UT

PQ RS
OOhhPPPPPPPP

\d

6>

This architecture means that

the www.lsec.be address

is controlled

by the DNS root server;

by the .be DNS server; and

by the lsec.be DNS server.

This isn’t just the

lsec.be DNS server!

e.g. 2001 incident:

An attacker fooled

Internet Central Headquarters

into accepting fake data

for microsoft.com.



All packets to/from DNS cache:

God sayeth unto the DNS cache:
“DNS Root K.Heaven 193.0.14.129”

193.0.14.129
“DNS .be brussels 193.190.135.4”

// DNS cache
“Web www.lsec.be?”oo

193.190.135.4
“DNS .lsec.be ns2 80.92.67.140”

// DNS cache
“Web www.lsec.be?”oo

80.92.67.140
“Web www.lsec.be 81.246.94.54”

// DNS cache
“Web www.lsec.be?”oo

GodWV UT

PQ RS

&&NNNNNNNNNNN Browser

Root
DNS
server

// DNS
cache

WV UT
PQ RS

OO

.be
DNS
server

::uuuuuuuuuuu .lsec.be
DNS
server

OO

.be
data

at Internet
Central HQ

base

OO

.lsec.be
database

OO

at lsec.be

Administrator

WV UT

PQ RS
OOhhPPPPPPPP

\d

6>

This architecture means that

the www.lsec.be address

is controlled

by the DNS root server;

by the .be DNS server; and

by the lsec.be DNS server.

This isn’t just the

lsec.be DNS server!

e.g. 2001 incident:

An attacker fooled

Internet Central Headquarters

into accepting fake data

for microsoft.com.



GodWV UT

PQ RS

&&NNNNNNNNNNN Browser

Root
DNS
server

// DNS
cache

WV UT
PQ RS

OO

.be
DNS
server

::uuuuuuuuuuu .lsec.be
DNS
server

OO

.be
data

at Internet
Central HQ

base

OO

.lsec.be
database

OO

at lsec.be

Administrator

WV UT

PQ RS
OOhhPPPPPPPP

\d

6>

This architecture means that

the www.lsec.be address

is controlled

by the DNS root server;

by the .be DNS server; and

by the lsec.be DNS server.

This isn’t just the

lsec.be DNS server!

e.g. 2001 incident:

An attacker fooled

Internet Central Headquarters

into accepting fake data

for microsoft.com.



GodWV UT

PQ RS

&&NNNNNNNNNNN Browser

Root
DNS
server

// DNS
cache

WV UT
PQ RS

OO

.be
DNS
server

::uuuuuuuuuuu .lsec.be
DNS
server

OO

.be
data

at Internet
Central HQ

base

OO

.lsec.be
database

OO

at lsec.be

Administrator

WV UT

PQ RS
OOhhPPPPPPPP

\d

6>

This architecture means that

the www.lsec.be address

is controlled

by the DNS root server;

by the .be DNS server; and

by the lsec.be DNS server.

This isn’t just the

lsec.be DNS server!

e.g. 2001 incident:

An attacker fooled

Internet Central Headquarters

into accepting fake data

for microsoft.com.

But wait, there’s more!

Recall that the DNS servers

for lsec.be have names.

at cert.org DNS cache
'& %$ ! "#

.be
DNS server

OO

.be
database

WV UT
PQ RS

OO

at lsec.be Administrator
'& %$ ! "#

OO

“The DNS server

for .lsec.be

is ns2

with IP address

80.92.67.140.”

5=



GodWV UT

PQ RS

&&NNNNNNNNNNN Browser

Root
DNS
server

// DNS
cache

WV UT
PQ RS

OO

.be
DNS
server

::uuuuuuuuuuu .lsec.be
DNS
server

OO

.be
data

at Internet
Central HQ

base

OO

.lsec.be
database

OO

at lsec.be

Administrator

WV UT

PQ RS
OOhhPPPPPPPP

\d

6>

This architecture means that

the www.lsec.be address

is controlled

by the DNS root server;

by the .be DNS server; and

by the lsec.be DNS server.

This isn’t just the

lsec.be DNS server!

e.g. 2001 incident:

An attacker fooled

Internet Central Headquarters

into accepting fake data

for microsoft.com.

But wait, there’s more!

Recall that the DNS servers

for lsec.be have names.

at cert.org DNS cache
'& %$ ! "#

.be
DNS server

OO

.be
database

WV UT
PQ RS

OO

at lsec.be Administrator
'& %$ ! "#

OO

“The DNS server

for .lsec.be

is ns2

with IP address

80.92.67.140.”

5=



GodWV UT

PQ RS

&&NNNNNNNNNNN Browser

Root
DNS
server

// DNS
cache

WV UT
PQ RS

OO

.be
DNS
server

::uuuuuuuuuuu .lsec.be
DNS
server

OO

.be
data

at Internet
Central HQ

base

OO

.lsec.be
database

OO

at lsec.be

Administrator

WV UT

PQ RS
OOhhPPPPPPPP

\d

6>

This architecture means that

the www.lsec.be address

is controlled

by the DNS root server;

by the .be DNS server; and

by the lsec.be DNS server.

This isn’t just the

lsec.be DNS server!

e.g. 2001 incident:

An attacker fooled

Internet Central Headquarters

into accepting fake data

for microsoft.com.

But wait, there’s more!

Recall that the DNS servers

for lsec.be have names.

at cert.org DNS cache
'& %$ ! "#

.be
DNS server

OO

.be
database

WV UT
PQ RS

OO

at lsec.be Administrator
'& %$ ! "#

OO

“The DNS server

for .lsec.be

is ns2

with IP address

80.92.67.140.”

5=



This architecture means that

the www.lsec.be address

is controlled

by the DNS root server;

by the .be DNS server; and

by the lsec.be DNS server.

This isn’t just the

lsec.be DNS server!

e.g. 2001 incident:

An attacker fooled

Internet Central Headquarters

into accepting fake data

for microsoft.com.

But wait, there’s more!

Recall that the DNS servers

for lsec.be have names.

at cert.org DNS cache
'& %$ ! "#

.be
DNS server

OO

.be
database

WV UT
PQ RS

OO

at lsec.be Administrator
'& %$ ! "#

OO

“The DNS server

for .lsec.be

is ns2

with IP address

80.92.67.140.”

5=



This architecture means that

the www.lsec.be address

is controlled

by the DNS root server;

by the .be DNS server; and

by the lsec.be DNS server.

This isn’t just the

lsec.be DNS server!

e.g. 2001 incident:

An attacker fooled

Internet Central Headquarters

into accepting fake data

for microsoft.com.

But wait, there’s more!

Recall that the DNS servers

for lsec.be have names.

at cert.org DNS cache
'& %$ ! "#

.be
DNS server

OO

.be
database

WV UT
PQ RS

OO

at lsec.be Administrator
'& %$ ! "#

OO

“The DNS server

for .lsec.be

is ns2

with IP address

80.92.67.140.”

5=

These names can be

outside lsec.be.

One of the DNS servers

for w3.org is named

w3csun1.cis.rl.ac.uk.

One of the DNS servers

for ac.uk is named

ns.eu.net.

One of the DNS servers

for eu.net is named

sunic.sunet.se.



This architecture means that

the www.lsec.be address

is controlled

by the DNS root server;

by the .be DNS server; and

by the lsec.be DNS server.

This isn’t just the

lsec.be DNS server!

e.g. 2001 incident:

An attacker fooled

Internet Central Headquarters

into accepting fake data

for microsoft.com.

But wait, there’s more!

Recall that the DNS servers

for lsec.be have names.

at cert.org DNS cache
'& %$ ! "#

.be
DNS server

OO

.be
database

WV UT
PQ RS

OO

at lsec.be Administrator
'& %$ ! "#

OO

“The DNS server

for .lsec.be

is ns2

with IP address

80.92.67.140.”

5=

These names can be

outside lsec.be.

One of the DNS servers

for w3.org is named

w3csun1.cis.rl.ac.uk.

One of the DNS servers

for ac.uk is named

ns.eu.net.

One of the DNS servers

for eu.net is named

sunic.sunet.se.



This architecture means that

the www.lsec.be address

is controlled

by the DNS root server;

by the .be DNS server; and

by the lsec.be DNS server.

This isn’t just the

lsec.be DNS server!

e.g. 2001 incident:

An attacker fooled

Internet Central Headquarters

into accepting fake data

for microsoft.com.

But wait, there’s more!

Recall that the DNS servers

for lsec.be have names.

at cert.org DNS cache
'& %$ ! "#

.be
DNS server

OO

.be
database

WV UT
PQ RS

OO

at lsec.be Administrator
'& %$ ! "#

OO

“The DNS server

for .lsec.be

is ns2

with IP address

80.92.67.140.”

5=

These names can be

outside lsec.be.

One of the DNS servers

for w3.org is named

w3csun1.cis.rl.ac.uk.

One of the DNS servers

for ac.uk is named

ns.eu.net.

One of the DNS servers

for eu.net is named

sunic.sunet.se.



But wait, there’s more!

Recall that the DNS servers

for lsec.be have names.

at cert.org DNS cache
'& %$ ! "#

.be
DNS server

OO

.be
database

WV UT
PQ RS

OO

at lsec.be Administrator
'& %$ ! "#

OO

“The DNS server

for .lsec.be

is ns2

with IP address

80.92.67.140.”

5=

These names can be

outside lsec.be.

One of the DNS servers

for w3.org is named

w3csun1.cis.rl.ac.uk.

One of the DNS servers

for ac.uk is named

ns.eu.net.

One of the DNS servers

for eu.net is named

sunic.sunet.se.



But wait, there’s more!

Recall that the DNS servers

for lsec.be have names.

at cert.org DNS cache
'& %$ ! "#

.be
DNS server

OO

.be
database

WV UT
PQ RS

OO

at lsec.be Administrator
'& %$ ! "#

OO

“The DNS server

for .lsec.be

is ns2

with IP address

80.92.67.140.”

5=

These names can be

outside lsec.be.

One of the DNS servers

for w3.org is named

w3csun1.cis.rl.ac.uk.

One of the DNS servers

for ac.uk is named

ns.eu.net.

One of the DNS servers

for eu.net is named

sunic.sunet.se.

One of the DNS servers

for sunet.se is named

beer.pilsnet.sunet.se

and is horribly insecure.

Attacker takes control of

beer.pilsnet.sunet.se;

tells DNS cache a fake address

for sunic.sunet.se;

tells DNS cache a fake address

for ns.eu.net;

tells DNS cache a fake address

for w3csun1.cis.rl.ac.uk;

tells DNS cache a fake address

for w3.org.



But wait, there’s more!

Recall that the DNS servers

for lsec.be have names.

at cert.org DNS cache
'& %$ ! "#

.be
DNS server

OO

.be
database

WV UT
PQ RS

OO

at lsec.be Administrator
'& %$ ! "#

OO

“The DNS server

for .lsec.be

is ns2

with IP address

80.92.67.140.”

5=

These names can be

outside lsec.be.

One of the DNS servers

for w3.org is named

w3csun1.cis.rl.ac.uk.

One of the DNS servers

for ac.uk is named

ns.eu.net.

One of the DNS servers

for eu.net is named

sunic.sunet.se.

One of the DNS servers

for sunet.se is named

beer.pilsnet.sunet.se

and is horribly insecure.

Attacker takes control of

beer.pilsnet.sunet.se;

tells DNS cache a fake address

for sunic.sunet.se;

tells DNS cache a fake address

for ns.eu.net;

tells DNS cache a fake address

for w3csun1.cis.rl.ac.uk;

tells DNS cache a fake address

for w3.org.



But wait, there’s more!

Recall that the DNS servers

for lsec.be have names.

at cert.org DNS cache
'& %$ ! "#

.be
DNS server

OO

.be
database

WV UT
PQ RS

OO

at lsec.be Administrator
'& %$ ! "#

OO

“The DNS server

for .lsec.be

is ns2

with IP address

80.92.67.140.”

5=

These names can be

outside lsec.be.

One of the DNS servers

for w3.org is named

w3csun1.cis.rl.ac.uk.

One of the DNS servers

for ac.uk is named

ns.eu.net.

One of the DNS servers

for eu.net is named

sunic.sunet.se.

One of the DNS servers

for sunet.se is named

beer.pilsnet.sunet.se

and is horribly insecure.

Attacker takes control of

beer.pilsnet.sunet.se;

tells DNS cache a fake address

for sunic.sunet.se;

tells DNS cache a fake address

for ns.eu.net;

tells DNS cache a fake address

for w3csun1.cis.rl.ac.uk;

tells DNS cache a fake address

for w3.org.



These names can be

outside lsec.be.

One of the DNS servers

for w3.org is named

w3csun1.cis.rl.ac.uk.

One of the DNS servers

for ac.uk is named

ns.eu.net.

One of the DNS servers

for eu.net is named

sunic.sunet.se.

One of the DNS servers

for sunet.se is named

beer.pilsnet.sunet.se

and is horribly insecure.

Attacker takes control of

beer.pilsnet.sunet.se;

tells DNS cache a fake address

for sunic.sunet.se;

tells DNS cache a fake address

for ns.eu.net;

tells DNS cache a fake address

for w3csun1.cis.rl.ac.uk;

tells DNS cache a fake address

for w3.org.



These names can be

outside lsec.be.

One of the DNS servers

for w3.org is named

w3csun1.cis.rl.ac.uk.

One of the DNS servers

for ac.uk is named

ns.eu.net.

One of the DNS servers

for eu.net is named

sunic.sunet.se.

One of the DNS servers

for sunet.se is named

beer.pilsnet.sunet.se

and is horribly insecure.

Attacker takes control of

beer.pilsnet.sunet.se;

tells DNS cache a fake address

for sunic.sunet.se;

tells DNS cache a fake address

for ns.eu.net;

tells DNS cache a fake address

for w3csun1.cis.rl.ac.uk;

tells DNS cache a fake address

for w3.org.

2000 Bernstein: .com etc. are

controlled by > 200 computers

via server-name server trust.

Many of these computers

run old breakable servers.

Lesson to administrators:

Don’t use out-of-bailiwick

names for DNS servers.

.com was then fixed.

Eventually w3.org was fixed;

this example no longer works.

2006 Ramasubramanian–Sirer

“Perils of transitive trust”:

Problem is still widespread.



These names can be

outside lsec.be.

One of the DNS servers

for w3.org is named

w3csun1.cis.rl.ac.uk.

One of the DNS servers

for ac.uk is named

ns.eu.net.

One of the DNS servers

for eu.net is named

sunic.sunet.se.

One of the DNS servers

for sunet.se is named

beer.pilsnet.sunet.se

and is horribly insecure.

Attacker takes control of

beer.pilsnet.sunet.se;

tells DNS cache a fake address

for sunic.sunet.se;

tells DNS cache a fake address

for ns.eu.net;

tells DNS cache a fake address

for w3csun1.cis.rl.ac.uk;

tells DNS cache a fake address

for w3.org.

2000 Bernstein: .com etc. are

controlled by > 200 computers

via server-name server trust.

Many of these computers

run old breakable servers.

Lesson to administrators:

Don’t use out-of-bailiwick

names for DNS servers.

.com was then fixed.

Eventually w3.org was fixed;

this example no longer works.

2006 Ramasubramanian–Sirer

“Perils of transitive trust”:

Problem is still widespread.



These names can be

outside lsec.be.

One of the DNS servers

for w3.org is named

w3csun1.cis.rl.ac.uk.

One of the DNS servers

for ac.uk is named

ns.eu.net.

One of the DNS servers

for eu.net is named

sunic.sunet.se.

One of the DNS servers

for sunet.se is named

beer.pilsnet.sunet.se

and is horribly insecure.

Attacker takes control of

beer.pilsnet.sunet.se;

tells DNS cache a fake address

for sunic.sunet.se;

tells DNS cache a fake address

for ns.eu.net;

tells DNS cache a fake address

for w3csun1.cis.rl.ac.uk;

tells DNS cache a fake address

for w3.org.

2000 Bernstein: .com etc. are

controlled by > 200 computers

via server-name server trust.

Many of these computers

run old breakable servers.

Lesson to administrators:

Don’t use out-of-bailiwick

names for DNS servers.

.com was then fixed.

Eventually w3.org was fixed;

this example no longer works.

2006 Ramasubramanian–Sirer

“Perils of transitive trust”:

Problem is still widespread.



One of the DNS servers

for sunet.se is named

beer.pilsnet.sunet.se

and is horribly insecure.

Attacker takes control of

beer.pilsnet.sunet.se;

tells DNS cache a fake address

for sunic.sunet.se;

tells DNS cache a fake address

for ns.eu.net;

tells DNS cache a fake address

for w3csun1.cis.rl.ac.uk;

tells DNS cache a fake address

for w3.org.

2000 Bernstein: .com etc. are

controlled by > 200 computers

via server-name server trust.

Many of these computers

run old breakable servers.

Lesson to administrators:

Don’t use out-of-bailiwick

names for DNS servers.

.com was then fixed.

Eventually w3.org was fixed;

this example no longer works.

2006 Ramasubramanian–Sirer

“Perils of transitive trust”:

Problem is still widespread.



One of the DNS servers

for sunet.se is named

beer.pilsnet.sunet.se

and is horribly insecure.

Attacker takes control of

beer.pilsnet.sunet.se;

tells DNS cache a fake address

for sunic.sunet.se;

tells DNS cache a fake address

for ns.eu.net;

tells DNS cache a fake address

for w3csun1.cis.rl.ac.uk;

tells DNS cache a fake address

for w3.org.

2000 Bernstein: .com etc. are

controlled by > 200 computers

via server-name server trust.

Many of these computers

run old breakable servers.

Lesson to administrators:

Don’t use out-of-bailiwick

names for DNS servers.

.com was then fixed.

Eventually w3.org was fixed;

this example no longer works.

2006 Ramasubramanian–Sirer

“Perils of transitive trust”:

Problem is still widespread.

What’s coming up

“Can we detect and

eliminate forged packets?”

— Second talk:

Cryptography in DNS.

“What about buffer overflows

and other software problems?”

— Third talk: Secure

design and coding for DNS.



One of the DNS servers

for sunet.se is named

beer.pilsnet.sunet.se

and is horribly insecure.

Attacker takes control of

beer.pilsnet.sunet.se;

tells DNS cache a fake address

for sunic.sunet.se;

tells DNS cache a fake address

for ns.eu.net;

tells DNS cache a fake address

for w3csun1.cis.rl.ac.uk;

tells DNS cache a fake address

for w3.org.

2000 Bernstein: .com etc. are

controlled by > 200 computers

via server-name server trust.

Many of these computers

run old breakable servers.

Lesson to administrators:

Don’t use out-of-bailiwick

names for DNS servers.

.com was then fixed.

Eventually w3.org was fixed;

this example no longer works.

2006 Ramasubramanian–Sirer

“Perils of transitive trust”:

Problem is still widespread.

What’s coming up

“Can we detect and

eliminate forged packets?”

— Second talk:

Cryptography in DNS.

“What about buffer overflows

and other software problems?”

— Third talk: Secure

design and coding for DNS.



One of the DNS servers

for sunet.se is named

beer.pilsnet.sunet.se

and is horribly insecure.

Attacker takes control of

beer.pilsnet.sunet.se;

tells DNS cache a fake address

for sunic.sunet.se;

tells DNS cache a fake address

for ns.eu.net;

tells DNS cache a fake address

for w3csun1.cis.rl.ac.uk;

tells DNS cache a fake address

for w3.org.

2000 Bernstein: .com etc. are

controlled by > 200 computers

via server-name server trust.

Many of these computers

run old breakable servers.

Lesson to administrators:

Don’t use out-of-bailiwick

names for DNS servers.

.com was then fixed.

Eventually w3.org was fixed;

this example no longer works.

2006 Ramasubramanian–Sirer

“Perils of transitive trust”:

Problem is still widespread.

What’s coming up

“Can we detect and

eliminate forged packets?”

— Second talk:

Cryptography in DNS.

“What about buffer overflows

and other software problems?”

— Third talk: Secure

design and coding for DNS.



2000 Bernstein: .com etc. are

controlled by > 200 computers

via server-name server trust.

Many of these computers

run old breakable servers.

Lesson to administrators:

Don’t use out-of-bailiwick

names for DNS servers.

.com was then fixed.

Eventually w3.org was fixed;

this example no longer works.

2006 Ramasubramanian–Sirer

“Perils of transitive trust”:

Problem is still widespread.

What’s coming up

“Can we detect and

eliminate forged packets?”

— Second talk:

Cryptography in DNS.

“What about buffer overflows

and other software problems?”

— Third talk: Secure

design and coding for DNS.


